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In supervised learning, ambiguous (A) samples that are difficult to label even by domain experts are
often encountered. In this study, we consider a binary classification problem using such A samples and
apply our in-house datasets of a cell culture process. This problem is substantially different from semi-
supervised learning because unlabeled samples are not necessarily difficult samples. Furthermore, it is
different from the three-class classification involving positive (P), negative (N), and A classes because the
test samples are not to be classified as the A class. Our proposed method extends binary classification
with a reject option, which trains a classifier and a rejector simultaneously using P and N samples based
on the 0-1-c loss with a rejection cost, ¢. More specifically, we propose to train a classifier and a rejector
based on the 0-1-c-d loss using P, N, and A samples, where d is the misclassification penalty for A
samples. In our practical implementation, we use the convex upper bound of the 0-1-c-d loss to achieve
computational tractability. Numerical experiments using the in-house datasets demonstrate that our
method can successfully utilize the additional information resulting from such A training data.
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a binary classification problem where, in addition to positive

1 Introduction

(P) and negative (N) samples, A samples are available for

Supervised learning has been successfully deployed in
various real-world applications, such as medical diagnosis [1]
and manufacturing systems [2]. However, when the amount
of labeled data is limited, current supervised learning meth-
ods become unreliable [3].

To efficiently obtain labeled data, domain knowledge has
been used in many applications [2], [4]. However, as indi-
cated in some studies [5], [6], ambiguous (A) samples that
are substantially difficult to label even by domain experts are
often encountered.

The goal of this study is to propose a novel classification

method that can manage A samples. Specifically, we consider
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training a classifier. Because of the characteristics of A
samples, they are assumed to be located near the boundary
between P and N classes.

We may consider employing three-class classification
methods for the P, N, and A classes. However, because we
intend to classify test samples only in the P or N class, not in
the A class, naive three-class methods cannot be directly
used in our problem. Moreover, they cannot utilize the infor-
mation that the A class exists between the P and N classes.
Another related approach is classification with a reject option
[71, [8], where A test samples are not classified into P or N

classes but as rejected (R). However, classification methods
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with a reject option do not consider A samples in the train-
ing phase; hence, they cannot be employed in our problem.

Semi-supervised learning may be related to the current
problem, where unlabeled (U) data, in addition to P and N
data, are used to train a classifier [9]. In semi-supervised
learning, U samples are P and N samples that have not yet
been labeled, and they are not necessarily difficult samples
to be labeled. By contrast, A samples in our target problem
are typically distributed at the intersection of P and N
classes. Thus, as the problem setups are intrinsically differ-
ent, merely using semi-supervised learning methods in the
current problem may not be optimal. Our problem and

related methods are summarized in Table 1.

Table 1 Problem settings of related and our methods.
Methods Labels in Labels Relationship
training data predicted in among classes
test phase
Binary classifi- P/ N P/N None
cation
Three-class Class 1 Class 1 None
classification Class 2 Class 2
Class 3 Class 3
Classification P/N P/R/N R samples are in
with reject P/N mixed
option regions
Semi-super- P/U/N P/N U samples belong
vised learning toPor N
Our proposal P/A/N P/N A samples are in
P/N mixed
regions

To effectively solve the classification problem involving A
data, we propose to extend classification with a reject option
that trains a classifier and a rejector simultaneously using P
and N samples based on the 0-1-c loss with a rejection cost,
¢ [8]. The proposed method trains a classifier and a rejector
based on the 0-1-c-d loss using P, N, and A samples, where
d is the misclassification penalty for A samples. Then, in the
test phase, we use the trained classifier to assign P or N
labels to the test samples. Through experiments using an in-
house cell culture dataset, we demonstrate that the proposed
method can improve the test classification accuracy by using

A samples in the training phase.

Z Formulation

In this section, we formulate our target problem, named

classification with ambiguous data (CAD), and propose a

49

new method for solving CAD.

2.1. Preliminary

We consider three class labels, namely, P, A, and N:
yeV = {1,0,—1}. We assume that we are assigned a set of P,
A, and N samples {(xiyyi)}zl drawn independently from a
probability distribution with density v (x,y) defined on
X xYo. Let h: X - R denote a discriminant function, with
which a class label is predicted to be P or N (not predicted
to be A) for a test input point, ¥, as = sign(h(x)). Our goal
is to learn a discriminant function that accurately classifies
the test samples (not in the A class). Our key question in
this scenario is whether we can utilize A training data to
improve the classification accuracy of the discriminant func-
tion.

Hence, we develop a new method based on classification
with a reject option (CRO) [8]. We first review the CRO

method before deriving the new method.

2.2. Classification with Reject Option using Support Vec-
tor Machine (CRO-SVM)

Cortes et. al. [8] introduced a rejection function, 7 : X = R,
in addition to the discriminant function, to identify regions
with a high risk for misclassification. When the rejection func-
tion yields a positive value, the corresponding sample is clas-
sified into the P or N class by using classifier #; otherwise, the
sample is rejected and not classified. When a sample is
rejected, a rejection cost, ¢, is incurred, which trades off the
risk of misclassification. To realize this idea, the 0-1-c loss is

introduced:

L Olc(h, 7,X, J’) = 1yh(x)£017(x)>0 + Clr(x)SO ’ (1)

where 14 is the indicator function that yields 1 if statement A
is true and 0 otherwise. When ¢ = 0, all samples are rejected
because the loss function does not incur any cost. By con-
trast, when ¢ > 0.5, no samples are rejected because the
expectation of the 0-1 loss, 1<, is less than 0.5; thus, the
0-1-c loss is reduced to the 0-1 loss. Therefore, we only
consider ¢ such that 0 < ¢ <0.5.
Based on the 0-1-c loss, the problem is expressed as
(h*,r*) = ar%zryr)linR(h,r),
' @
R(h,r) =B (xy) [me (hﬂ',x,y)],

where /& and 7" denote the optimal discriminant function
and rejection function, respectively, and By (x.y) denotes the
expectation over fo (x ,y), In practice, because the true den-

sity, o (x,y), is unknown, we typically use the empirical dis-
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tribution to approximate the expectation:
- 1<
h)=— (7, %, i) 3
R( ) N;Lfn ( J’) (6))

Because of the discrete nature of the 0-1-¢ loss, its direct
optimization is computationally intractable. To avoid discon-
tinuity, the following surrogate loss, known as the max-hinge
(MH) loss, is introduced:

Ly (h,7,x,9)=

@
max(1+%(r(x)—yh(x)),c(l—ﬂr(x)),O),
where o, f > 0 are the hyperparameters used to control the
shape of the surrogate loss. The surrogate loss is an exten-
sion of the hinge loss, which is employed in a support vector
machine (SVM) [10].
Further, introducing L2 regularization, basis functions
¢1(%),....¢v (%), and slack variables &= (51,...,§N)T with

being the transpose yields the following quadratic program:
~ A Ay e Ay 1N
(@) = avgmin] 2 + 2+ % 4|
&21+g(n—%h)

st| &=c(l-pr)
£>0

fori=1,...,,N,

where w=(w,...,wy )T are the coefficients of the discrimi-
nant function; u=(u,...,ux )T are the coefficients of the
rejection function; 4,1’ >0 are the L2 regularization param-
eters; I; and 7 denote the values of the discriminant function
and rejection function at sample point % expressed as
hi=3Y,w;¢;(x) and 7 ZZf-’:lu]—q)]—(x,-), respectively. The
resulting discriminant and rejection functions are expressed
as h(x,z?;) =3, w;¢;(x) and r(x;ﬁ) =3 iti¢;(x), respec-
tively.
We refer to this method as CRO-SVM.

2.3. Proposed Method: Classification with A Data using
SVM (CAD-SVM)
To manage A training data in the SVM formulation, we
extend the 0-1-c loss to the 0-1-c-d loss, as Eq. (6):

Table 2 0-1-c¢ loss function.

Judgment P R N

(h, 1) h>0 r<0 h<0

Label y r>0 >0
P:y=1 0 c 1
Niy=-1 1 c 0

Table 3 0-1-c-d loss function.

Judgment P R N

(h, r) h>0 r<0 h<0

Label y r>0 r>0
P:y=1 0 c 1
Ary=0 d 0 d
N:y=-1 1 c 0

Lotea (B,7,%,9) =

®)
Loy (1yh(x)s017(x)>0 + L0 ) +d1,-L (0

Tables 2 and 3 present comparisons of the behaviors of the
0-1-c and 0-1-c-d losses, respectively. For the P and N sam-
ples, the 0-1-c-d loss behaves the same as the 0-1-c loss. In
contrast, for the A samples, the 0-1-c-d loss incurs penalty d
when they are classified as the P or N class. Therefore, A
samples tend to be classified into the A class if we employ
the 0-1-c-d loss. Unlike the CRO formulation, CAD utilizes A
samples to learn a rejector explicitly.

This discussion may mislead us as if we are just solving a
three-class problem involving P, N, and A classes. However,
we do not classify the test samples into the A class, but only
into the P and N classes. To solve the CAD problem, we
utilize a binary discriminant function, %, and a rejection func-
tion, 7, as in the CRO formulation reviewed earlier. We train
h and 7 based on the 0-1-¢-d loss, and we use only % in the
test phase to classify the test samples into P and N classes.
Owing to the interplay between % and 7 in the 0-1-¢c-d loss, we
can utilize A samples to train % through 7.

Similar to the 0-1-c loss, we consider the following convex
upper bound of the 0-1-¢-d loss, named max-hinge-ambigu-

ous (MHA) loss, as a surrogate to avoid its discrete nature:

Lotea (h,7,%,9) < 1oy L (h,7,%,¥) + d1,-9 max(l +pBr(x),0

=y max(1+%(r(x)—yh(x)),c(l—ﬁr(x)),0)+(1—y2)max(d(1+ﬁr(x)),0)

@)

<y max(1+%(f(x)—yh(x)),c(l—ﬁr(x)),0)+(l—yz)max(nd(1+ﬂr(x)),0)

= LMHA (hvrvx,y)i

50



An Application of Binary Classification using Ambiguous Training Data

Loygaty=+1 Loyg at y=0 8

CNEawyg

Fig. 1

0-1-c-d loss, Lo, and its surrogate loss, Lya.

where n>1 is a hyperparameter that controls the shape of
the surrogate loss (see Fig. 1 for the visualization).
Next, similar to CRO-SVM, we have the following qua-

dratic program:
(@) angin) 5+ o+

G ny(1+%(% —y,-h-))
st|  &=yne(1-pBnr)
& 2(1—y?)nd(1+ﬁr,~)

®

fori=1,...,N.

This formula expresses our proposed method, CAD-SVM.
To select hyperparameters (Ot, ﬂ,n), we can apply the fol-

lowing theorem (its proof is available in [11]):

Theorem 1 For each x € X, let

(hglcd ’ 7’0*1cd )

©
= ar%n}inEmW) [Loud (h,r,x,y)],
and
(hK)IHA,TﬁﬂA)
. 10)
= arﬁryr;lnE,,ﬂW) [LMHA (h,r,x,y)].
Then, for
. ._ 2
=2(1—20), B=1+2¢, ' =—, 11

1+2¢

the signs of (hﬁm,n&}m) match those of (hﬁ‘lcd,ﬁ)*lcd).
In the next section, we demonstrate that this method is
feasible. It is noteworthy that Eq. (11) does not include d.

3 Numerical Experiments

In this section, we report the experimental results
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obtained using an in-house dataset from a cell culture pro-
cess. A detailed performance evaluation and a comparison
with baseline methods on other datasets have been reported
in [11].

3.1. Dataset

For real-world applications, we prepared an in-house cell-
culture dataset. This dataset contains 124 fields of view
(FOVs). For each FOV, images were acquired three times at
T =199, 279, and 459 h. All images for each FOV were ana-
lyzed using an image processing software, CL-Quant [12],
and converted to eight morphological features, such as the
average brightness and average area of cells. Based on the
final image for each FOV (T =459 h), each FOV was anno-
tated by experts. If the cells in the image appeared healthy/
damaged, the image was labeled as P/N. Otherwise, the
experts assign A labels to samples that cannot be confidently
classified as healthy or damaged. The numbers of samples
for the P, N, and A classes were 41, 59, and 24, respectively.
Our goal was to predict the final state of each FOV (anno-
tated by the experts in this simulation) using morphological
features obtained from each time point of the culturing pro-
cess. In total, we trained and evaluated three types of datas-
ets (Datasets 1, 2, and 3), corresponding to the time point of
the input images, T. For Datasets 1 and 2, the images from
which we extracted the input features and those from which
we annotated the output labels were different; this is illus-
trated in Fig. 2.

279 459 Time [h] \
Image capture 1
D ] m—

Labeling

mage anaIyS|s ﬁ (PINIA)
v

x i(Z) xl_(s) Vi

i
[
% |

Prediction

Dataset 1

Fig. 2 Schematic image of datasets. We created three types of
datasets and evaluated corresponding models.

3.2. Experimental Settings

Using the aforementioned datasets, we compared the clas-
sification performance of the SVM, SVM-RL (random label),
LapSVM [13], two-step SVM, CRO-SVM, CRO-SVM-RL, and
CAD-SVM.

For each method, 1500 test runs were performed by
changing the training and test datasets, which were ran-

domly selected from the original dataset. The ratio of the
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training and test datasets was 4:1. For each test run, five-fold
cross-validation was performed to determine the relevant
parameters. For validation and in the test phase, only P and
N samples were applied to the discriminant function; hence,
we were able to evaluate the binary classification accuracy.
We determined 10 hyperparameters (/l,l’,oz o’,1,¢,d,x, ﬁ,n),
where ¢ is the width of the Gaussian radial basis function in
2
the basis function ¢i(x)= eXp{—"xZ_(;i"

rameter of the weight matrix, W, of the graph Laplacian

], o’ is the hyperpa-

[ -5

expressed as Wy = exp[—’&‘,zJ (only in the LapSVM),

and 7 is the coefficient of the graph Laplacian regularization
(only in the LapSVM). The hyperparameters (Ot,ﬁ,n) were
determined by using Eq. (11), and other hyperparameters
were selected via five-fold cross-validation (see [11] for
details). The experimental procedure applied for each data-

set and method is summarized in Algorithm 1.

Input: D = {(xpy)}y, H = {(/1;,,1’5,a;,a;,r;,cf,df)};=1
Forj =1,...,1500 do:
Derain < (random set of 0.8N records in D)
Drest < D \ Derain
(’Dt(rla)m, ,D‘(r?m) « (random set that equally divide D into 5)
Fork =1,..,5 do:
Dyalia < Dt(:‘a)in
Dsubtrain < Derain \ Dvalia
Foré( =1,..,Zdo:
Create a model using Dsyptrain Under hyperparameter setting H
ag.k) « (binary classification accuracy of Dyajiq)
Ry
§" « argmax; @@
Create amodel using Dyrajn under hyperparameter setting H ¢
a; « (binary classification accuracy of Deest)
Calculate the mean and standard deviation of a;

Algorithm 1  Experimental procedure for each dataset and method.

3.3. Results
Table 4 summarizes the test accuracy of each method.

The CAD-SVM showed statistically significant improvements

Table 4  Test accuracy for each timepoint, where + denotes standard
deviation. Boldfaced numbers represent the best and com-
parable results with 5% t-test.

Dataset 1 Dataset 2 Dataset 3

(T'=99) (T'=279) (T =459)
SVM 0.732 £ 0.092 0.799 + 0.088 0.941 + 0.049
SVM-RL 0.730 +£ 0.096 0.805 + 0.088 0.929 + 0.058
LapSVM 0.731 £0.091 0.801 +0.089 0.931 + 0.055
Two-step SVM  0.733 £ 0.097 0.788 £ 0.090 0.931 + 0.054
CRO-SVM 0.747 £ 0.095 0.814 + 0.087 0.939 + 0.050
CRO-SVM-RL  0.740 £ 0.097 0.818 + 0.085 0.920 + 0.063
CAD-SVM 0.755 £ 0.094 0.819 +0.087 0.937 + 0.051
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over the other methods, particularly in the earlier stages of
the culturing process. In the earlier stages, the input data
contained few or inaccurate information; therefore, utilizing
A samples would be beneficial. However, because the input
data contained almost complete information during the final
state, the information of A samples need not be utilized. If
the information of A samples is intrinsically meaningless,
then the SVM would be a better solution as it utilizes the
hinge loss directly based on the 0-1 loss (i.e., the binary
classification accuracy). Overall, the CAD-SVM is a promis-

ing method for utilizing A samples.

4 Conclusion

In this study, we aimed to reduce labeling cost and
improve classification accuracy by allowing labelers to pro-
vide A labels for difficult samples. We extended a classifica-
tion method with a reject option and proposed a novel clas-
sification method, named CAD-SVM, which uses the 0-1-¢c-d
loss. We derived a surrogate loss for the 0-1-¢c-d loss, thereby
allowing us to convert the optimization problem into a con-
vex quadratic program. We conducted numerical experi-
ments and demonstrated that A labels can be effectively
used to improve the classification accuracy.

Although our proposed method was based on the SVM, it
would be more useful if it is applicable to other models, par-
ticularly to deep neural networks. In future studies, we will
conduct a theoretical analysis of the proposed method in
terms of the statistical consistency and convergence rate.
Extending the proposed loss function to semi-supervised,
imperfect labeling, or multiclass problems is also a promis-

ing direction for future research.
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