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Machine learning has been great successful in many areas in recent years. However, in general, the
conventional data driven approaches in machine learning may have limitations for the following senses:
1) Lack of interpretability, 2) Low accuracy in insufficient data and annotations. To develop predictive
model with rich interpretabilities, we focus on ordinary differential equation (ODE) discovery problem and
propose a novel algorithm using kernel ridge regression with sparsity inducing regularizer. The ODEs
have been modeled by domain experts based on theoretical deduction and empirical observations. So,
automatic discovery of ODEs through data-driven is of great significance in various scientific fields, such
as those of physics, chemistry, and biology in terms of interpretable predictions. Furthermore, to remedy
the issues 1) and 2), we shortly introduce Informed Machine Learning, a machine learning pipeline
framework with prior knowledge, and provide useful knowledge for further development of the learning
system from the viewpoint of manufacturing companies. Such an attempt will help us to develop the
interpretable learning systems that can deal with insufficient data.
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cesses, it is important to interpret the results and suggest

1 Introduction

next action for engineers.

Many methodologies in machine learning make some
inference by using data efficiently. In general, the conven-
tional data driven approaches may have limitations for the
following senses.

I. Lack of interpretability. If the machine learning tech-
niques work well, interpretation and explanation are often
required for the resultant algorithms and models. Under-
standing the natural phenomena in science, particularly, can
be more important than making accurate predictions. For

example, during anomaly detection in manufacturing pro-

Il. Low accuracy in insufficient data and annotations.
We must deal with the lack of enough data or their labels.
For example, an adequate amount of customer data cannot
be obtained owing to confidentiality and privacy issues or
limitations related to the biological and medical experimental
environment. Despite the advanced knowledge for annota-
tions, it is difficult to obtain enough labeled datasets.

To remedy these issues, we mainly focus on 1) Ordinary
differential equation (ODE) discovery problem for develop-

ing predictive model with rich interpretabilities, and shortly

" This article contains a summary of ¥
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provide 2) taxonomy of useful prior knowledge for develop-
ing further develop the learning systems in manufacturing

companies.

1.1. ODE discovery problem

Various types of nonlinear dynamical systems have been
developed for characterizing the natural phenomena in sci-
ence and engineering. For example, Newtonian dynamics,
i.e., Newton’s second law describes the dynamics of parti-
cles, and enzyme Kkinetics provides insights into the catalytic
mechanisms of enzymes in the biochemical context. Such
dynamics are often described as nonlinear ODE in the fol-
lowing form:

. dx
x=5=f(x;e), @
where x is the state variable, ¢ is the time, and f is a non-
linear function parameterized by 6. Historically, many impor-
tant ODEs, e.g., Newton’ law, Maxwell equations, enzyme
kinetics, were discovered by domain experts based on theo-
retical deduction and empirical observations.

A question we try to answer in this paper is whether such
discovery process can be automated, i.e., we try to find
ODEs that the observed time-series data satisfy, automati-
cally by training machine learning models*'. To accomplish
this, the following two issues need to be addressed: param-
eter specification and inference. The former, known as the
ODE parameter inference problem, corresponds to the
determination of the internal parameter 9, and the latter,
known as the ODE discovery problem, corresponds to the
identification of the functional form of f in Eq. (1).

We tackle the ODE discovery problem in the first half of
this article. In practice, most of the possible applications
include the identification of the dynamics of biopathways,
which are usually described as ODEs based on their bio-
chemical reactions”. Even though various computational
models of regulatory and metabolic networks have been
proposed by domain experts (e.g.?), determining the essen-
tial connectivity and structures of these dynamics remains an
extremely challenging task. In computer aided engineering
(CAE) processes, the dynamics of the flow and temperature
on materials need to be mathematically modeled to design
and construct mechanical architectures. Thus, inferring the
structures and nonlinear dynamics in large systems is a
challenging problem.

Additionally, if the predictive models are trained in the

form of an ODE function, they can provide rich interpret-

abilities to domain experts. That is, the terms in the ODEs
can be considered relevant in a physical or chemical context
(e.g., friction strength or reaction intensity). Therefore, our
study may be closely related to the estimation of interpreta-

ble predictive models.

1.2. Taxonomy of useful knowledge

To deal with the subjects mentioned in 1) and 2), several
works incorporated prior knowledge into machine learning
processes” 1%, For example, knowledge gained from a sci-
entific or mechanical perspective can help us to improve the
learning accuracy and interpretability. As concrete examples,
physics guided neural networks, where a penalty term
inspired by scientific knowledge is added to the loss function
as regularizer, provide more accurate results than purely
data driven approaches”. A recent study introduced a sys-
tematic taxonomy of integrating knowledge into learning
systems, called Informed Machine Learning'’. The study
provides definitions of the prior knowledge, its representa-
tion, and integration into the machine learning pipeline. In
this study, we introduce new useful domain knowledge to
further develop the learning system in the context of manu-
facturing. Such an attempt will help us to develop useful and

efficient learning systems for manufacturing companies.

2 ODE discovery in RKHS

In this section, we introduce the ODE discovery problem,

our approach, and report on experimental results.

2.1. Problem definition and related works
Consider N time points # < £, -+ < ty and their correspond-

ing state variables

X:[x(tl),...,x(tN)]T=[x1,...,xN]T 2
where x, e RY represents the states at the s-th time-point.
Similarly, the matrix of derivatives can be described as

X =[5(0) e ®(t) ] =[reesin | 3
Our problem includes estimating the functional form of f in
Eq. (1) from the data X given by Eq. (2). This can be
accomplished using a method in which sparse inference is
applied to fit the numerical derivatives of a linear regression
model using a large set of possible ODE candidate func-
tions'?'?. Such methods are called sparse identification of
nonlinear dynamics (SINDy). In SINDy, the library of candi-
dates of the nonlinear functions constructed by their states

are set as

*1 Although Eq. (1) involves only the first derivative, it covers any finite degree ODE: for expressing an R-th degree ODE, the state vector x should be
augmented by its first to the R-1-th degree derivatives. This procedure adequately set the degree of freedom (i.e., the dimension of the state) of the model.
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o(X)=[1x x* x*--], @
where X* denotes the matrix containing all possible column
vectors obtained from the time series of k-th degree polyno-
mials in the state vector x. Note that the dimension D of
©(X) with k-th polynomial terms in d variables can be
computed as ;.,Cy; the possible combination is given by
N, =2 ;D:1 Ci.
The ODE with the possible candidate bases can be mod-

eled in the parametric form:

X=0(X)B, ©)
where B=[,...,Bs ] corresponds to the coefficients of the
ODE. Let us focus on the /-th column,

=0(X)B ©)

where X, = [x; (t1)eos (tN)]. Then, it is evident that if
Bis =0, the s-th feature is not effective in the [-th state. Thus,
the ODE discovery problem in the formulation is reduced to
the inference problem where the coefficients of matrix B
contain many zero components. The original SINDy algo-
rithm uses the sequential thresholded least squares (see
Algorithm 1 in'?). Lasso also can be employed as an alterna-

tive approach to enforce sparsity:

B = argngn"x, —0(X)B [+ 2B ]:.v1, @)

where A denotes the strength of the L1 regularization term
that controls the sparsity. Note that in this approach, the
derivatives should be computed numerically from the noisy
observations, for which stable implementation is non-trivial.
However, the numerical computation of the derivatives is not
trivial, and several studies have focused on differentiating
the variables precisely. Among many methods proposed,
SINDy employed the total variation regularized derivatives
(TVDiff) ™ method, a well-known robust method for comput-
ing the derivatives from noisy data.

Many methods have been proposed to solve the parame-
ter inference problem for ODE, given the function form of f.
Gradient matching methods, which are effective for inferring

the parameters of ODEs'®™"®

, consist of two steps: a
smoothing process to fit the data and an optimization pro-
cess to minimize some metric between the smooth model
and the derivatives predicted from ODEs. A recently pro-
posed gradient matching method defined in the reproducing
kernel Hilbert space (RKHS)'® achieved significant improve-
ments in comparison to alternative probabilistic meth-
0ds'®'”. The method minimizes the loss term for the kernel
regression term and the gradient matching term simultane-
ously:

{4',6"} =argmin o £(4,6), ®
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E(4,6 illgf (on) -1
+p3 i (or) - £ (s(4):6) 3. ©
where kernel regression can be expressed as
g(ta)=3 b k()= alk(t), (10)
and
&(ta)=al k(). e8))

Here, oy =[ony,...,00n ]T denotes the vector of the kernel
regression coefficients of the /-th variable. The vector of I-th
kernels of , k(t)= [k,(t,tl),...,k,(t,tN)]T is specified by the
hyperparameter ¢, i.e., k (t)=k(t;¢:). The first term in Eq.
(9) encourages reconstructed by &(ta) of the data Xi,
while the second term penalizes the inconsistency with the

ODE model.

2.2. Proposed method

Inspired by the methods provided in the previous subsec-
tion, we propose a hybrid algorithm of sparse inference and
a gradient matching algorithm in RKHS.

First, we impose L1 and L2 regularization to Eq. (9):

E(A,B)= éEI (4,B),

Ei(4,8)=]é (@)~

p||g/(a/)—X/ "%,

12)

A)ﬁ/ "% + A4 "ﬁ/ ||1 + ol Koy +
13)

where the first term corresponds to the gradient matching
term, in which the ODE is represented as a library of candi-
dates of possible bases, ©(4), similar to SINDy. The interpo-
lant functions g (e ) and & (eu) are defined by Egs. (10) and
(11), respectively. {kl, A2, p} are the regularization parame-
ters and the Gram matrix K; depends on the kernel param-
eter ¢;. The minimization of Eq. (12) with respect to 4
encounters a problem of the complicated dependence of the
first term on A. Introducing an auxiliary variable A detangles

the dependency:

E(4,4B)=$E(4,4p), (14)
E,(A A ﬂ/)—"gz 0!1 ( )ﬂ1"2+/11"ﬁ1"1

+ Jood Ko + pllgi (o) - X 3

+ s Jou — a5 (15)

The last term forces 4 to match 4 when A; is sufficiently
large, thereby leading to E, (A,/],B) =E,(A4,B). We optimize
each parameter; Eq. (15) can be analytically minimized with
respect to A4 as follows:

o =[ K7 (2udy + pK:)+ KT K+ 2l |
x [pK,X; +KI©(A)B + /’Lsa,]. (16)
Then, A is replaced with A for the next iteration, giving

E (A“e‘”,A“EW,B). Minimization with respect to B can be per-
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formed by the standard-lasso algorithm, such as coordinate
descent, least angle regression, or alternating direction
method of multipliers'?. It is known that L1 regularizer
tends to give a significant bias to the LASSO estimator. To
remove the bias, we reapply the least squares method for
the non-zero components Q;={i| § # 0} as the final step.
p=(07e) oKa, an
where @' =0, and f; =pio. The hyperparameters
h={2,®}, where A ={A1,%2,2s,p} and ® ={¢y,...,¢,}, which
correspond to the regularization and kernel parameters,

respectively, are determined in preliminary experiment.

2.3. Numerical experimental settings
Baseline methods

To compare the algorithm performances for the ODE
discovery problem, we selected the following methods as
baselines.

- TVSINDy'?: the sequential thresholded least-squares
method for selecting variables with the total variation
method for numerical differentiation.

- TVLasso: the lasso for selecting variables with the total
variation method for numerical differentiation.

- RKHS-Lasso (1): special case of proposed method with-
out the iteration, i.e., the solution obtained after a single
epoch.

- RKHS-Lasso: our proposed method.

TVSINDy was the first method proposed for the ODE
discovery problem, as demonstrated in Section 2.1; it was
implemented using the MATLAB code provided by the
authors. TVLasso represents our minor modifications to the
TVSINDy method; we used the lasso algorithm in the MAT-
LAB library after the total variation method for numerical
differentiation. The third and fourth methods are proposed
by us; note that the former corresponds to the easy version
of our method. The hyperparameters were tuned manually.
Benchmark ODE models

- 1D-Spring model, given by

Xx=v, v=—kx—w, (18)

where x(t)= [x(t),v(t)] consisting of the position and
velocity, £ and v are the model parameters expressing spring
constant and air resistance constant, respectively.

- Lotka-Volterra model ™ is a model for ecological system
that is used to describe the interactions between two species
corresponding to predators and preys. The accurate ODE
can be described as follows:

H=H(a-pP), P=-P(y-5H) a9

- Lorentz system® was developed as a simplified mathe-

matical model for atmospheric convection. The true ODE
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can be described by
i=0(y-x).i=x(p-z)-yz=xy-Py (20)
where x(t)= [x(t),y(t),z(t)] correspond to the rate of
convection, horizontal temperature, and vertical temperature,
respectively.
- Enzyme kinetics® is a well-known mathematical formula-
tion for enzyme-catalyzed reactions that can be described by

four-dimensional ODE systems:
[$]=-ki[E][S]+Rs[ES],
[E]=-ki[E][S]+ (k1 +R)[ES],
[ES]=ki[E][S]-(k1+R)[ES],
[P]=t[ES]

where x(t)=[[S].[E].[ES],[P]] correspond to a sub-

strate, enzyme, complex, and product, respectively.

@D

Settings of kernels and library

In this study, the least-square kernel, k(¢,t") = aexp((t - t)z /
2b2), was used for the spring, Lotka-Volterra, and Lorentz
systems and the sigmoid kernel, k(t,#)=oc"arcsin(a+
bit’/ Z), where Z = \/(a+ bt +1)(a+bt” +1), was used for

enzyme Kinetics. Note that the derivatives of each kernel

with respect to ¢ can be analytically computed (see supple-
ment in'”). The library of the candidates of nonlinear func-
tions were set to be second order polynomials:
@(X) = [1,X X 2]. Thus, the numbers of features, D, in each
variable was 4 for the spring and Lotka-Volterra models, 10

for the Lorentz system, and 15 for enzyme Kinetics.

2.4. Results

Two criteria were used to compare the performances: the
MSE of B defined by AB=1/Dd3.?4|B - By
defined by the harmonic mean of precision and recall, where

% and Fscores

B denotes the value estimated by each method.

In Fig. 1, each component of B is compared with the
ground truth By in two cases with different noise levels for
the (a) Lorenz system and (b) Enzyme system, where the
regularization parameter A is tuned so as to give the best
Fscore by changing it systematically. Note that A, corre-
sponds to the threshold of the iterative scheme in TVSINDy
and the L1 regularized parameter in TVLasso, RKHS-
Lasso(1), and RKHS-Lasso respectively. When the noise is
large, more misidentifications occur; while, the parameters
obtained with RKHS-Lasso are close to the true value.

Table 1 summarizes the performance in four benchmark
ODE models with two different noise levels. It is evident that
the proposed method outperforms the baselines in most

cases.
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(b) Enzyme kinetics
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Fig. 1 Each panel shows both the ground truth (blue bars) and the estimated parameters (red bars) in each candidate
function.

Table I MSE and Fscores in four benchmark ODE models. The means and standard deviations (values in the bracket) over 10 simulation trials
are shown with the regularization parameter optimized for the Fscores.

TVSINDy TVLasso RKHS-Lasso (1) RKHS-Lasso
=y | MSEGmim) | 0.3128 0009 | 0.0185 0.052) | 0.0391 0.0322) | 0.0148 (0.0215)
oring model Fscore (max) | 0.7250 (0.0876) | 1.0000 (< 1e-6) | 1.0000 (<1e-6) | 1.0000 (< 1e-6)
, MSE (min) | 1.9133 (2.0197) | 0.6157 (0.6381) | 0.4620 (0.365127) | 0.4096 (0.3473)
SEMAZD core (max) | 0.6810 (0.0698) | 0.7490 (0.1797) | 0.8062 (0.1946) | 0.8157 (0.1838)
=y | M) | 01667 (<1e6) | 52044 (13ed) | 23044 635 | 1.3 (1,209
Fscore (max) | 0.6667 (< 1e6) | 0.8000 (< 1e-6) | 0.8000 (< 1e-6) | 0.7782 (0.0351)

Lotka-Volterra model

MSE (min) 0.1667 (< le-6) 0.0014 (0.0012) 3.4e-4 (3.7e-4) 2.8e-4 (4.0e-4)
Fscore (max) | 0.6667 (< le-6) 0.7442 (0.0534) 0.7648 (0.0486) '0.8004 (0.1244)

MSE (min) | 29.8885 (1.7e-4) 5.5922 (1.2e-4) 0.5169 (2.9e-5) 0.0091 (2.4e-5)
Fscore (max) | 0.6667 (< le-6) 0.7143 (< le-6) 0.7368 (< le-6) 0.7778 (< 1e-6)

MSE (min) | 23.4052 (12.9023) | 9.1514 (0.8997) | 3.620779 (0.5580) | 1.964616 (0.5135)

sigma =5

sigma = le4

Lorentz system

sigma = 1
& Fscore (max) | 0.6808 (0.0403) 0.7143 (< 1e-6) 0.71433 (< 1e-6) 0.7143 (< 1e-6)
. led MSE (min) >le+3 0.5599 (1.7e-4) '0.3145 (0.2169) | 0.04343 (2.0e-4)
sigma = le-
£ Fscore (max) | 0.2093 (0.0010) 0.2908 (0.0333) 36 (0.0685) 0.57711 (0.0120)
Enzyme kinetics
MSE (min) >le+3 0.6229 (0.004699) | 0.2953 (0.2719) 0.2491 (0.2606)

isigma=0.01
| { Fscore (max) | 0.2285 (0.0238) 0.2000 (< 1e-6) 0.4651 (0.0901) 0.4831 (0.0849)
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2.5. Short summary

We proposed a new method to solve the ODE discovery
problem that combined the RKHS-based method for interpo-
lating the signals from the time series measurements and
the sparse inference for selecting relevant bases from the
library of possible features.

Our simulation studies showed that the proposed method
compared favorably with the baseline methods based on
sparse inference with the total variation regularized deriva-

tives.

3 Useful domain knowledge to introduce
in machine learning systems

We briefly review the Informed Machine Learning and
provide the useful prior knowledge in manufacturing for
developing interpretable learning systems that deal with

insufficient data.

3.1. Overview of Informed Machine Learning

Informed Machine Learning is a framework where prior
knowledge is explicitly integrated into the machine learning
pipeline (Fig. 2). Rueden et al. defined “knowledge” as vali-
dated information about the relations between entities in
certain contexts'”. Such additional information will make the
conventional machine learning techniques performed by
data driven approaches more powerful in the following
aspects:

- Incorporating what we have accumulated in a domain so
far into a new system; prediction accuracy may be higher.

- By effectively utilizing the “knowledge and human
resources” assets of a domain, unique systems can be devel-
oped.

- Interpretability for the learning processes and predicted

results can be improved.

Problem Data Solution
f:XoY (z1,31) y [
(zN,uN) [&x
T
L)
'
' - -
[, p  Prior .‘:Tw.d:n.l. —— Machine Learning
Knowledge
_ _ _ Informed
L Machine Learning

Fig. 2 Concept of Informed Machine Learning'".

The taxonomy of the knowledge source, knowledge repre-
sentation, and knowledge integration was elaborated'” *2

Here, we reconsider the part of “knowledge sources” from

the manufacturing perspective.

3.2. Useful domain knowledge

Knowledge source refers to the origin of prior knowledge,
which means various types of knowledge. They can be cat-
egorized as follows.

Natural Science: it is typically validated explicitly through
scientific experiments (e.g., the universal laws of physics,
bio-molecular descriptions of genetic sequences, or material-
forming production processes).

Design information®: it denotes the specifications and
mechanical information used in product design, including
component dimensions, design layout, and structure of the
products.

Process flows™: it represents the product manufacturing
process and manufacturing settings. It sometimes includes
staffing, inspection equipment settings, factory size, and
inventory for the production.

Confidence™: it denotes the reliability for annotations or
data. Sometimes, data labels may vary; in such cases, the
confidence is given at the same time as data.

Domestic reports/ Past cases™: it denotes the past cases
and considerations confirmed in-house, which are often
given heuristically.

Aggregated human knowledge: it represents the facts from
everyday life that are known to almost everyone and can
also be called general knowledge.

(Expert’s) Intuition: it denotes the knowledge based on
the experiences and insights of experts that may not always
have scientific evidence.

It should be noted that the knowledge sources marked
with * are newly introduced in addition to the original form
(Fig. 2 in'?) from the viewpoint of manufacturing companies.
The framework enriches our approaches of machine learn-

ing development.

4 Summary

‘We introduced two topics in this article: 1) ODE discovery
problem and 2) useful domain knowledge to introduce in
machine learning systems. In the former, we proposed an
algorithm for discovering the functional form of ODE from
time-series data that combined the gradient matching
method and sparse inference; the proposed method outper-

formed other baseline methods. The latter provided an effec-

*2 In the original paper, the process of integrating prior knowledge into the machine learning pipeline was systematically investigated as following perspectives:
1) “what type of knowledge is integrated?”, 2) “how is the knowledge represented or transformed?”, 3) “where is the knowledge integrated in the machine

learning pipeline?”.
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tive and usable domain knowledge in manufacturing pro-
cesses for developing the Informed Machine Learning that
is effective framework for integrating the prior knowledge
into the machine learning pipeline. Our proposition will be
useful for future machine learning techniques and data sci-

ence development.
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