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機械学習は近年様々な分野で成功を収めてきている．しかし一般に，従来のデータ駆動型の機械学習は次のような課

題がある． 1 ）解釈性が乏しい， 2 ）不十分なデータやラベルに対して十分な精度がでない．本稿ではまず，解釈可能
な予測モデルを構成するため，時系列データから常微分方程式（ODE）を発見する問題に焦点を当て，スパース推定と
カーネルリッジ回帰を用いた新しいアルゴリズムを提案する．ODE はこれまで専門家の深い洞察によってモデル化さ
れてきたが，データ駆動で ODE の関数形を発見することは，解釈性を備えた予測モデルを学習するという観点から，
物理，化学，生物分野などの様々な科学分野において価値がある．さらに上記 1 ）と 2 ）の課題を解決するため，近年
提案されたドメイン知識を活用した機械学習のフレイムワークである Informed Machine Leaning について簡単に紹
介し，ものづくり企業の立場から機械学習に活用できる知識を整理する．このような試みは，解釈性が高く，不十分な
データについても対応可能な機械学習システムの開発に役立つと考えられる．

Machine learning has been great successful in many areas in recent years. However, in general, the 
conventional data driven approaches in machine learning may have limitations for the following senses: 
1) Lack of interpretability, 2) Low accuracy in insufficient data and annotations. To develop predictive 
model with rich interpretabilities, we focus on ordinary differential equation (ODE) discovery problem and 
propose a novel algorithm using kernel ridge regression with sparsity inducing regularizer. The ODEs 
have been modeled by domain experts based on theoretical deduction and empirical observations. So, 
automatic discovery of ODEs through data-driven is of great significance in various scientific fields, such 
as those of physics, chemistry, and biology in terms of interpretable predictions. Furthermore, to remedy 
the issues 1) and 2), we shortly introduce Informed Machine Learning, a machine learning pipeline 
framework with prior knowledge, and provide useful knowledge for further development of the learning 
system from the viewpoint of manufacturing companies. Such an attempt will help us to develop the 
interpretable learning systems that can deal with insufficient data.

常微分方程式，スパース推定，再生核ヒルベルト空間，ドメイン知識，知識が導入された機械学習
ordinary differential equations, sparse inference, reproducing kernel space, domain knowledge, Informed Machine Learning

　　　　　 　　　　　　　　　　　　　　　　　　　　　　　　　　　　　　　　　　　　　　　　　　　　　　　　　　　　

1  Introduction

　Many methodologies in machine learning make some 

inference by using data efficiently. In general, the conven-

tional data driven approaches may have limitations for the 

following senses.

　I. Lack of interpretability. If the machine learning tech-

niques work well, interpretation and explanation are often 

required for the resultant algorithms and models. Under-

standing the natural phenomena in science, particularly, can 

be more important than making accurate predictions. For 

example, during anomaly detection in manufacturing pro-

cesses, it is important to interpret the results and suggest 

next action for engineers.

　II. Low accuracy in insufficient data and annotations. 
We must deal with the lack of enough data or their labels. 

For example, an adequate amount of customer data cannot 

be obtained owing to confidentiality and privacy issues or 

limitations related to the biological and medical experimental 

environment. Despite the advanced knowledge for annota-

tions, it is difficult to obtain enough labeled datasets.

　To remedy these issues, we mainly focus on 1) Ordinary 

differential equation (ODE) discovery problem for develop-

ing predictive model with rich interpretabilities, and shortly 
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provide 2) taxonomy of useful prior knowledge for develop-

ing further develop the learning systems in manufacturing 

companies.

1.1.	ODE	discovery	problem
　Various types of nonlinear dynamical systems have been 

developed for characterizing the natural phenomena in sci-

ence and engineering. For example, Newtonian dynamics, 

i.e., Newton＇s second law describes the dynamics of parti-

cles, and enzyme kinetics provides insights into the catalytic 

mechanisms of enzymes in the biochemical context. Such 

dynamics are often described as nonlinear ODE in the fol-

lowing form:

　　
x x f x= = ( )d

dt
; ,θθ  (1)

　where x is the state variable, t is the time, and f  is a non-

linear function parameterized by θθ . Historically, many impor-

tant ODEs, e.g., Newton＇ law, Maxwell equations, enzyme 

kinetics, were discovered by domain experts based on theo-

retical deduction and empirical observations.

　A question we try to answer in this paper is whether such 

discovery process can be automated, i.e., we try to find 

ODEs that the observed time-series data satisfy, automati-

cally by training machine learning models*1. To accomplish 

this, the following two issues need to be addressed: param-

eter specification and inference. The former, known as the 

ODE parameter inference problem, corresponds to the 

determination of the internal parameter θθ , and the latter, 

known as the ODE discovery problem, corresponds to the 

identification of the functional form of f  in Eq. (1).

　We tackle the ODE discovery problem in the first half of 

this article. In practice, most of the possible applications 

include the identification of the dynamics of biopathways, 

which are usually described as ODEs based on their bio-

chemical reactions1). Even though various computational 

models of regulatory and metabolic networks have been 

proposed by domain experts (e.g.2)), determining the essen-

tial connectivity and structures of these dynamics remains an 

extremely challenging task. In computer aided engineering 

(CAE) processes, the dynamics of the flow and temperature 

on materials need to be mathematically modeled to design 

and construct mechanical architectures. Thus, inferring the 

structures and nonlinear dynamics in large systems is a 

challenging problem.

　Additionally, if the predictive models are trained in the 

form of an ODE function, they can provide rich interpret-

abilities to domain experts. That is, the terms in the ODEs 

can be considered relevant in a physical or chemical context 

(e.g., friction strength or reaction intensity). Therefore, our 

study may be closely related to the estimation of interpreta-

ble predictive models.

1.2.	Taxonomy	of	useful	knowledge
　To deal with the subjects mentioned in 1) and 2), several 

works incorporated prior knowledge into machine learning 

processes3)～1₀). For example, knowledge gained from a sci-

entific or mechanical perspective can help us to improve the 

learning accuracy and interpretability. As concrete examples, 

physics guided neural networks, where a penalty term 

inspired by scientific knowledge is added to the loss function 

as regularizer, provide more accurate results than purely 

data driven approaches₉). A recent study introduced a sys-

tematic taxonomy of integrating knowledge into learning 

systems, called Informed Machine Learning11). The study 

provides definitions of the prior knowledge, its representa-

tion, and integration into the machine learning pipeline. In 

this study, we introduce new useful domain knowledge to 

further develop the learning system in the context of manu-

facturing. Such an attempt will help us to develop useful and 

efficient learning systems for manufacturing companies.

2  ODE discovery in RKHS

　In this section, we introduce the ODE discovery problem, 

our approach, and report on experimental results.

2.1.	Problem	definition	and	related	works
　Consider N time points t1 < t2 … < tN and their correspond-

ing state variables

　　X x x x x= ( ) … ( )  = … t tN
T

N
T

1 , , , ,1  (2)
where xs

d∈  represents the states at the s-th time-point. 

Similarly, the matrix of derivatives can be described as

　　 

   X x x x x= ( ) … ( )  = … t tN
T

N
T

1 1, , , ,  (3)

Our problem includes estimating the functional form of f  in 

Eq. (1) from the data X  given by Eq. (2). This can be 

accomplished using a method in which sparse inference is 

applied to fit the numerical derivatives of a linear regression 

model using a large set of possible ODE candidate func-

tions12)13). Such methods are called sparse identification of 

nonlinear dynamics (SINDy). In SINDy, the library of candi-

dates of the nonlinear functions constructed by their states 

are set as

*1 Although Eq. (1) involves only the first derivative, it covers any finite degree ODE: for expressing an R-th degree ODE, the state vector x should be 
augmented by its first to the R-1-th degree derivatives. This procedure adequately set the degree of freedom (i.e., the dimension of the state) of the model.
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　　ΘΘ X X X X( ) =  1 ,2 3
  (4)

where X k denotes the matrix containing all possible column 

vectors obtained from the time series of k-th degree polyno-

mials in the state vector x. Note that the dimension D of 

ΘΘ X( )  with k-th polynomial terms in d variables can be 

computed as k+dCd; the possible combination is given by 

N Cp i
D

D i= =∑ 1 .

　The ODE with the possible candidate bases can be mod-

eled in the parametric form:

　　 X X B= ( )ΘΘ , (₅)

where B = … ββ ββ1, , d  corresponds to the coefficients of the 

ODE. Let us focus on the l-th column,

　　 X Xl = ( )ΘΘ ββl  (₆)
where X l l l Nx x t= ( ) … ( ) t1 , , . Then, it is evident that if 
βl s, ,= 0  the s-th feature is not effective in the l-th state. Thus, 

the ODE discovery problem in the formulation is reduced to 

the inference problem where the coefficients of matrix B 

contain many zero components. The original SINDy algo-

rithm uses the sequential thresholded least squares (see 

Algorithm 1 in14)). Lasso also can be employed as an alterna-

tive approach to enforce sparsity:

　　ββ ββ ββ
ββ

l l l l
l

l= − ( ) + ∀arg min , ,X XΘΘ 2
2

1λ  
(₇)

where λ  denotes the strength of the L1 regularization term 

that controls the sparsity. Note that in this approach, the 

derivatives should be computed numerically from the noisy 

observations, for which stable implementation is non-trivial. 

However, the numerical computation of the derivatives is not 

trivial, and several studies have focused on differentiating 

the variables precisely. Among many methods proposed, 

SINDy employed the total variation regularized derivatives 

(TVDiff)1₅) method, a well-known robust method for comput-

ing the derivatives from noisy data.

　Many methods have been proposed to solve the parame-

ter inference problem for ODE, given the function form of f . 

Gradient matching methods, which are effective for inferring 

the parameters of ODEs1₆)～1₈), consist of two steps: a 

smoothing process to fit the data and an optimization pro-

cess to minimize some metric between the smooth model 

and the derivatives predicted from ODEs. A recently pro-

posed gradient matching method defined in the reproducing 

kernel Hilbert space (RKHS)1₈) achieved significant improve-

ments in comparison to alternative probabilistic meth-

ods1₆)1₇). The method minimizes the loss term for the kernel 

regression term and the gradient matching term simultane-

ously:

　　 A A* *
A, , ,,θθ θθθθ{ } = ( )argmin E  (₈)

　　
E

l

d
l l l

l

d
l l l

A g X

g f g A

,

; ,

θθ αα

αα θθ

( ) = ( ) −

+ ( ) − ( )( )
=

=

∑

∑

1
2
2

2
2ρ

1


E
l

d
l l l

l

d
l l l

A g X

g f g A

,

; ,

θθ αα

αα θθ

( ) = ( ) −

+ ( ) − ( )( )
=

=

∑

∑

1
2
2

2
2ρ

1


 
(₉)

where kernel regression can be expressed as

　　 g kl l i
N

l i i l
T
lt k t t t;αα αα αα( ) = ( ) = ( )=∑ 1 , , ,  (1₀)

and

　　 

g kl l l
T
lt t; .αα αα( ) = ( )  (11)

Here, αα l l N
T= … α α, ,, ,1 1  denotes the vector of the kernel 

regression coefficients of the l-th variable. The vector of l-th 

kernels of t, kl l l N
T

t k t t k t t( ) = ( ) … ( ) , , , ,1  is specified by the 

hyperparameter φφ l , i.e., k kl lt t( ) = ( ); .φφ  The first term in Eq. 

(₉) encourages reconstructed by g tl ;αα( ) of the data X l , 

while the second term penalizes the inconsistency with the 

ODE model.

2.2.	Proposed	method
　Inspired by the methods provided in the previous subsec-

tion, we propose a hybrid algorithm of sparse inference and 

a gradient matching algorithm in RKHS.

　First, we impose L1 and L2 regularization to Eq. (₉):

　　E E
l

d
l lA B A, , ,( ) = ( )

=
∑

1
ββ  (12)

　　
El l l l l l l

T
l l l l lA g A K g X, ,ββ αα ββ ββ αα αα αα( ) = ( ) − ( ) + + + ( ) − ΘΘ 2

2
1 1 2 2

2λ λ ρ

El l l l l l l
T

l l l l lA g A K g X, ,ββ αα ββ ββ αα αα αα( ) = ( ) − ( ) + + + ( ) − ΘΘ 2
2

1 1 2 2
2λ λ ρ

 
(13)

　where the first term corresponds to the gradient matching 

term, in which the ODE is represented as a library of candi-

dates of possible bases, ΘΘ A( ), similar to SINDy. The interpo-

lant functions gl lαα( ) and gl lαα( ) are defined by Eqs. (1₀) and 

(11), respectively. λ λ1 2, , ρ{ } are the regularization parame-

ters and the Gram matrix Kl depends on the kernel param-

eter φφ l . The minimization of Eq. (12) with respect to A 

encounters a problem of the complicated dependence of the 

first term on A. Introducing an auxiliary variable A detangles 

the dependency:

　　   E A A E A A, , , , ,B( ) = ( )
=
∑
l

d
l l

1
ββ  (14)

　　
E A A g A K g Xl , ,� � �ββ ββ ββαα αα αα ααl l l l l l

T
l l l l l( ) = ( ) − ( ) + + + ( ) −ΘΘ 2

2
1 1 2 2

2λ λ ρ ++ −λ3 2
2αα ααl l� .

E A A g A K g Xl , ,� � �ββ ββ ββαα αα αα ααl l l l l l
T

l l l l l( ) = ( ) − ( ) + + + ( ) −ΘΘ 2
2

1 1 2 2
2λ λ ρ ++ −λ3 2

2αα ααl l� .

E A A g A K g Xl , ,� � �ββ ββ ββαα αα αα ααl l l l l l
T

l l l l l( ) = ( ) − ( ) + + + ( ) −ΘΘ 2
2

1 1 2 2
2λ λ ρ ++ −λ3 2

2αα ααl l� .

 

(1₅)

　The last term forces A to match A when λ3 is sufficiently 

large, thereby leading to E El lA A B A B, , , .( ) = ( )  We optimize 

each parameter; Eq. (1₅) can be analytically minimized with 

respect to A as follows:

　　αα ββl l
T

N l l
T

l N l l l
T

l
new = +( ) + +  × + ( ) +

−
K I K K K I K X K Aλ2 3

1
ρ λ ρ λ� � � �ΘΘ 33 �αα l  .

αα ββl l
T

N l l
T

l N l l l
T

l
new = +( ) + +  × + ( ) +

−
K I K K K I K X K Aλ2 3

1
ρ λ ρ λ� � � �ΘΘ 33 �αα l  .

 

(1₆)

　Then, A is replaced with A for the next iteration, giving 
E A A Bnew new, , .( )  Minimization with respect to B can be per-
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formed by the standard-lasso algorithm, such as coordinate 

descent, least angle regression, or alternating direction 

method of multipliers1₉). It is known that L1 regularizer 

tends to give a significant bias to the LASSO estimator. To 

remove the bias, we reapply the least squares method for 

the non-zero components ′= ≠Ωl li{ | }β 0  as the final step.

　　ββ ααl
T

l l= ( )′ ′ ′
−

ΘΘ ΘΘ ΘΘ
1

K ,  (1₇)

 where ′ = ′ΘΘ ΘΘ.,Ωl
 and ββ ββl l l= ′, .Ω  The hyperparameters 

h = { }λλ , ,ΦΦ  where λλ = { }λ λ λ ρ1 2 3, , ,  and ΦΦ = …{ }φφ φφ1, , ,d  which 

correspond to the regularization and kernel parameters, 

respectively, are determined in preliminary experiment.

2.3.	Numerical	experimental	settings
Baseline methods
　To compare the algorithm performances for the ODE 

discovery problem, we selected the following methods as 

baselines.

　・TVSINDy12): the sequential thresholded least-squares 

method for selecting variables with the total variation 

method for numerical differentiation.

　・TVLasso: the lasso for selecting variables with the total 

variation method for numerical differentiation.

　・RKHS-Lasso (1): special case of proposed method with-

out the iteration, i.e., the solution obtained after a single 

epoch.

　・RKHS-Lasso: our proposed method.

　TVSINDy was the first method proposed for the ODE 

discovery problem, as demonstrated in Section 2.1; it was 

implemented using the MATLAB code provided by the 

authors. TVLasso represents our minor modifications to the 

TVSINDy method; we used the lasso algorithm in the MAT-

LAB library after the total variation method for numerical 

differentiation. The third and fourth methods are proposed 

by us; note that the former corresponds to the easy version 

of our method. The hyperparameters were tuned manually.

Benchmark ODE models
・1D-Spring model, given by

　　  x v v kx vv= = − −, , (1₈)

　where x t x t v t( ) ≡ ( ) ( ) ,  consisting of the position and 

velocity, k and v are the model parameters expressing spring 

constant and air resistance constant, respectively.

　・Lotka-Volterra model 2₀) is a model for ecological system 

that is used to describe the interactions between two species 

corresponding to predators and preys. The accurate ODE 

can be described as follows:

　　  H H P P P H= −( ) = − −( )α β δ, γ  (1₉)

　・Lorentz system21) was developed as a simplified mathe-

matical model for atmospheric convection. The true ODE 

can be described by

　　
  x y x y x z y z xy y= −( ) = −( ) − −σ , ρ β, =  (2₀)

　where x t x t y t z t( ) ≡ ( ) ( ) ( ) , ,  correspond to the rate of 

convection, horizontal temperature, and vertical temperature, 

respectively.

　・Enzyme kinetics2) is a well-known mathematical formula-

tion for enzyme-catalyzed reactions that can be described by 

four-dimensional ODE systems:

　　

P k ES  =  2

kES E S k k ES  =     − +( ) −1 1 2 ,

E k  = −     + +( ) −1 1 2E S k k ES ,

S k  = −     +  −1 1E S k ES ,

 

(21)

　where x t S E ES P( ) ≡         , , , correspond to a sub-

strate, enzyme, complex, and product, respectively.

Settings of kernels and library
　In this study, the least-square kernel, k t t a t t b, / ,′( ) = −( )( )exp

2 22

k t t a t t b, / ,′( ) = −( )( )exp
2 22  was used for the spring, Lotka-Volterra, and Lorentz 

systems and the sigmoid kernel, k t t a btt Z, arcsin / ,′ ′( ) = +( )σ 2  

k t t a btt Z, arcsin / ,′ ′( ) = +( )σ 2 where Z =Z = + +( ) + ′ +( )a bt a bt2 21 1 , was used for 

enzyme kinetics. Note that the derivatives of each kernel 

with respect to t can be analytically computed (see supple-

ment in1₇)). The library of the candidates of nonlinear func-

tions were set to be second order polynomials: 

ΘΘ X( ) =  1, , .X X 2  Thus, the numbers of features, D, in each 

variable was 4 for the spring and Lotka-Volterra models, 1₀ 

for the Lorentz system, and 1₅ for enzyme kinetics.

2.4.	Results
　Two criteria were used to compare the performances: the 

MSE of B defined by ∆B B B= −=∑1 1 2
2/ Dd i

Dd
true∆B B B= −=∑1 1 2

2/ Dd i
Dd

trueB̂  and Fscores 

defined by the harmonic mean of precision and recall, where 

B̂ denotes the value estimated by each method.

　In Fig. 1, each component of B̂ is compared with the 

ground truth Btrue in two cases with different noise levels for 

the (a) Lorenz system and (b) Enzyme system, where the 

regularization parameter λs is tuned so as to give the best 

Fscore by changing it systematically. Note that λs  corre-

sponds to the threshold of the iterative scheme in TVSINDy 

and the L1 regularized parameter in TVLasso, RKHS-

Lasso(1), and RKHS-Lasso respectively. When the noise is 

large, more misidentifications occur; while, the parameters 

obtained with RKHS-Lasso are close to the true value.

　Table 1 summarizes the performance in four benchmark 

ODE models with two different noise levels. It is evident that 

the proposed method outperforms the baselines in most 

cases.
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Fig. 1 Each panel shows both the ground truth (blue bars) and the estimated parameters (red bars) in each candidate 
function.

Table 1 MSE and Fscores in four benchmark ODE models. The means and standard deviations (values in the bracket) over 10 simulation trials 
are shown with the regularization parameter optimized for the Fscores.

TVSINDy TVLasso RKHS-Lasso (1) RKHS-Lasso

Spring model

sigma = 1
MSE (min) ₀.312₈ (₀.₀₉43) ₀.₀4₈₅ (₀.₀₅22) ₀.₀334 (₀.₀322) 0.0148 (0.0215)

Fscore (max) ₀.₇2₅₀ (₀.₀₈₇₆) 1.0000 (< 1e-6) 1.0000 (< 1e-6) 1.0000 (< 1e-6)

sigma = ₅
MSE (min) 1.₉133 (2.₀1₉₇) ₀.₆1₅₇ (₀.₆3₈1) ₀.4₆2₀ (₀.3₆₅12₇) 0.4096 (0.3473)

Fscore (max) ₀.₆₈1₀ (₀.₀₆₉₈) ₀.₇4₉₀ (₀.1₇₉₇) ₀.₈₀₆2 (₀.1₉4₆) 0.8157 (0.1838)

Lotka-Volterra model

sigma = 1
MSE (min) ₀.1₆₆₇ (< 1e-₆) ₅.2e-4 4 (1.3e-4) 2.3e-4 4 (₆.3e-₅) 1.3e-5 (1.2e-5)

Fscore (max) ₀.₆₆₆₇ (< 1e-₆) 0.8000 (< 1e-6) 0.8000 (< 1e-6) ₀.₇₇₈2 (₀.₀3₅1)

sigma = ₅
MSE (min) ₀.1₆₆₇ (< 1e-₆) ₀.₀₀14 (₀.₀₀12) 3.4e-4 (3.₇e-4) 2.8e-4 (4.0e-4)

Fscore (max) ₀.₆₆₆₇ (< 1e-₆) ₀.₇442 (₀.₀₅34) ₀.₇₆4₈ (₀.₀4₈₆) '0.8004 (0.1244)

Lorentz system

sigma = 1e-4
MSE (min) 2₉.₈₈₈₅ (1.₇e-4) ₅.₅₉22 (1.2e-4) ₀.₅1₆₉ (2.₉e-₅) 0.0091 (2.4e-5)

Fscore (max) ₀.₆₆₆₇ (< 1e-₆) ₀.₇143 (< 1e-₆) ₀.₇3₆₈ (< 1e-₆) 0.7778 (< 1e-6)

sigma = 1
MSE (min) 23.4₀₅2 (12.₉₀23) ₉.1₅14 (₀.₈₉₉₇) 3.₆2₀₇₇₉ (₀.₅₅₈₀) 1.964616 (0.5135)

Fscore (max) ₀.₆₈₀₈ (₀.₀4₀3) 0.7143 (< 1e-6) 0.71433 (< 1e-6) 0.7143 (< 1e-6)

Enzyme kinetics

sigma = 1e-4
MSE (min) > 1e + 3 ₀.₅₅₉₉ (1.₇e-4) '₀.314₅ (₀.21₆₉) 0.04343 (2.0e-4)

Fscore (max) ₀.2₀₉3 (₀.₀₀1₀) ₀.2₉₀₈ (₀.₀333) 3₆ (₀.₀₆₈₅) 0.57711 (0.0120)

sigma = ₀.₀1
MSE (min) > 1e + 3 ₀.₆22₉ (₀.₀₀4₆₉₉) ₀.2₉₅3 (₀.2₇1₉) 0.2491 (0.2606)

Fscore (max) ₀.22₈₅ (₀.₀23₈) ₀.2₀₀₀ (< 1e-₆) ₀.4₆₅1 (₀.₀₉₀1) 0.4831 (0.0849)
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2.5.	Short	summary
　We proposed a new method to solve the ODE discovery 

problem that combined the RKHS-based method for interpo-

lating the signals from the time series measurements and 

the sparse inference for selecting relevant bases from the 

library of possible features.

　Our simulation studies showed that the proposed method 

compared favorably with the baseline methods based on 

sparse inference with the total variation regularized deriva-

tives.

3  Useful domain knowledge to introduce 
in machine learning systems

　We briefly review the Informed Machine Learning and 

provide the useful prior knowledge in manufacturing for 

developing interpretable learning systems that deal with 

insufficient data.

3.1.	Overview	of	Informed	Machine	Learning
　Informed Machine Learning is a framework where prior 

knowledge is explicitly integrated into the machine learning 

pipeline (Fig. 2). Rueden et al. defined ＂knowledge＂ as vali-

dated information about the relations between entities in 

certain contexts11). Such additional information will make the 

conventional machine learning techniques performed by 

data driven approaches more powerful in the following 

aspects:

　・Incorporating what we have accumulated in a domain so 

far into a new system; prediction accuracy may be higher.

　・By effectively utilizing the ＂knowledge and human 

resources＂ assets of a domain, unique systems can be devel-

oped.

　・Interpretability for the learning processes and predicted 

results can be improved.

Fig. 2　Concept of Informed Machine Learning11).

　The taxonomy of the knowledge source, knowledge repre-

sentation, and knowledge integration was elaborated11), *2. 

Here, we reconsider the part of ＂knowledge sources＂ from 

the manufacturing perspective.

3.2.	Useful	domain	knowledge
　Knowledge source refers to the origin of prior knowledge, 

which means various types of knowledge. They can be cat-

egorized as follows.

Natural Science: it is typically validated explicitly through 

scientific experiments (e.g., the universal laws of physics, 

bio-molecular descriptions of genetic sequences, or material-

forming production processes).

Design information*: it denotes the specifications and 

mechanical information used in product design, including 

component dimensions, design layout, and structure of the 

products.

Process flows*: it represents the product manufacturing 

process and manufacturing settings. It sometimes includes 

staffing, inspection equipment settings, factory size, and 

inventory for the production.

Confidence*: it denotes the reliability for annotations or 

data. Sometimes, data labels may vary; in such cases, the 

confidence is given at the same time as data.

Domestic reports/ Past cases*: it denotes the past cases 

and considerations confirmed in-house, which are often 

given heuristically. 

Aggregated human knowledge: it represents the facts from 

everyday life that are known to almost everyone and can 

also be called general knowledge.

　(Expert’s) Intuition: it denotes the knowledge based on 

the experiences and insights of experts that may not always 

have scientific evidence. 

　It should be noted that the knowledge sources marked 

with * are newly introduced in addition to the original form 

(Fig. 2 in11)) from the viewpoint of manufacturing companies. 

The framework enriches our approaches of machine learn-

ing development.

4  Summary

　We introduced two topics in this article: 1) ODE discovery 

problem and 2) useful domain knowledge to introduce in 

machine learning systems. In the former, we proposed an 

algorithm for discovering the functional form of ODE from 

time-series data that combined the gradient matching 

method and sparse inference; the proposed method outper-

formed other baseline methods. The latter provided an effec-

*2 In the original paper, the process of integrating prior knowledge into the machine learning pipeline was systematically investigated as following perspectives: 
1) ＂what type of knowledge is integrated?＂, 2) ＂how is the knowledge represented or transformed?＂, 3) ＂where is the knowledge integrated in the machine 
learning pipeline?＂.
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tive and usable domain knowledge in manufacturing pro-

cesses for developing the Informed Machine Learning that 

is effective framework for integrating the prior knowledge 

into the machine learning pipeline. Our proposition will be 

useful for future machine learning techniques and data sci-

ence development.
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