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Introduction of Al Technology in Imaging Software for
Microscopes and Life Science Applications
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The application of artificial intelligence in image processing is being investigated extensively in life
sciences. We developed and installed NIS.ai, an image processing technology that uses deep learning,
in NIS-Elements, which is an imaging software for microscope systems. By integrating NIS.ai with NIS-
Elements, NIS.ai enables users to use advanced deep learning technology easily with tasks such as
image conversion, segmentation and so on. In this study, we show that users can obtain accurate
analysis results with minimal effort using NIS.ai. First, we confirm that the analysis using NIS.ai for images
of unstained cells exhibits the same accuracy as that of the conventional analysis for images of stained
cells. Second, we demonstrate that the effects of staining reagents and the phototoxicity that occurs when
capturing fluorescence images can be avoided by utilizing NIS.ai. Finally, we demonstrate that by
incorporating NIS.ai into NIS-Elements, automatic imaging, which is difficult to achieve using conventional

image analysis, can be achieved, and a new value can be obtained.
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1 Introduction

In the field of life science, digital image processing is
being conducted during the observation of cells with bio-
logical microscopes to automate cell counting and classifica-
tion. Recently, widespread studies have been conducted on
image-processing technology using deep learning, which is
a type of artificial intelligence (Al) that is applied to segmen-
tation, classification, digital staining, sharpening, and super-
resolution [1].

NIS-Elements is an imaging software for microscope sys-
tems with microscope and camera control, image processing,
analysis, and reporting functions. Nikon previously equipped

NIS-Elements with a microscope image-processing functions,

applying several deep learning techniques. In this paper, we
introduce NIS.ai behind the functions that may be adopted
for digital staining (Convert.ai) and segmentation (Segment.

ai), as well as their applications in life science.

2 Microscope image processing functions
applying deep learning

Image processing technologies, such as morphological
transformation, and non-deep machine learning technologies,
such as random forest can be adopted for relatively simple
segmentation and sharpening. However, proficient skills and
individual adjustments, such as designing image filters, are

required to improve the quality of processing results.
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The two NIS.ai functions (Convert.ai, Segment.ai) intro-
duced in this paper adopt convolutional neural networks, a
type of deep learning, and employ supervised learning,
which require training data. Because the design of image
filters is automatically performed in its training process, deep
learning does not require the traditional image processing or
proficient skills required for machine learning. In addition, it
is characterized by further improving accuracy by increasing
the training dataset size or the number of training iterations.

When using deep learning, hyperparameter usually needs
to be tuned, depending on the tasks to be applied. Tuning
hyperparameters is a trial-and-error task, which is generally
time- and labor intensive. However, since NIS.ai adopts opti-
mized networked construction for microscope images, opti-
mal results can be easily obtained with just a few settings

even if the user is not familiar with deep learning.

Table 1 Settings for NIS.ai training

Iterations

Convert.ai
Dynamic range adaptation (on/off)
Iterations

Segment.ai Dynamic range adaptation (on/off)

Detect touching object (on/off)

Table 1 presents the settings for NIS.ai training. Iterations
is an option that specifies the number of training repetitions.
Although the optimal value depends on the amount of training
data and variations, a value of approximately 1000 is usually
acceptable. The training times required to use NVIDIA
Quadro RTX 4000 to set 1000 iterations are approximately 3.5
h and 4.0 h with Convert.ai and with Segment.ai, respectively,
and the inference time for images of 1600 x 1600 pixels in the
same environment is 1 s or less per image. Although the
training time is long, this poses no practical challenge because
it is more important that a trained model, prepared at one
time by the training, can be used several times with a short
inference time. “dynamic range adaptation” is an option for
specifying when there is little brightness variation in training
data, while “detect touching object” is an option for specifying
when the user wants a highly-precise isolation of objects in
close proximity to each other in Segment.ai.

Processing by NIS.ai comprises two phases: a training
phase for preparing a trained model using user-prepared
training data, and an inference phase using the training
results to output inferred images from the target data (Fig. 1).

In the training phase, the user needs to prepare an origi-

nal image for conversion, as well as a ground truth image to

serve as a teacher. The image acquisition function of NIS-
Elements can acquire multi-channel images such as phase
contrast images and fluorescent images. Users can use
multi-channel images acquired with NIS-Elements as they
are, or use images, which are processed with the NIS-Ele-
ments image processing functions, as training data.

In the inference phase, after the target data have been
inferred with the trained model, the processing outputs are
further processed by the NIS-Elements image processing
functions, and analyzed by counting or tracking. Subsequently,
the results can be output as graphs or exported to Excel.

In addition, by adopting a function that automates combina-
tions of NIS-Elements standard image processing and analysis
processing (GA3), and a function that automates the analysis
processing steps from image acquisition with specified com-
plex conditions (JOBS), it is possible to automate the series of
processes from image acquisition to analysis. Furthermore,
the analysis can be more efficient by changing the processes
according to the analysis results. Since NIS.ai is integrated
into NIS-Elements, it does not only provide Al-processing for
microscope images, but also facilitates highly convenient,
automated, and sophisticated analysis.

In the following sections, we introduce examples of NIS.ai

applications with such features in life science.
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Fig. 1 Processing steps for training and inference
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3 Examples of AI Applications in the
Field of Life Science

This chapter introduces the following three cases using
NIS.ai.
3.1. Highly accurate fluorescence image generation using
unstained microscope images
3.2. Avoiding effects of stain reagents with digital staining

3.3. Automated workflow of acquiring microscope images

3.1. Highly accurate fluorescence image generation using
unstained microscope images

Samples are stained in biology, medical, and drug discov-
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ery studies to identify and detect specific structures and
molecules in tissue and cells with a microscope. However,
staining involves problems such as the cost of reagents,
complexity of experiments, and varying staining results.
Furthermore, since samples cannot be reused after staining,
multiple samples must be prepared during clinical testing.
This problem is addressed by adopting deep learning to
output stained images of specific structures from unstained
microscope images, such as bright field microscopy, which
is also called digital staining. The Convert.ai of NIS.ai is a
function that can be applied to this digital staining. In this
section, we present an example of generating fluorescence
images of cell nuclei from images acquired via phase con-
trast microscopy.

For the verification sample, we adopted a BS-C-1 cell line
that constantly expresses the fluorescent-tagged protein
localized on the cell nucleus surface. For observation, we
used a Ti-E inverted microscope with a 20x objective lens
(CFI S Plan Fluor ELWD ADM 20XC 0.45NA, Nikon,
Japan), and acquired phase contrast images and fluores-
cence images with EMCCD (iXon3, Andor technology,
Oxford Instruments, UK). Verification proceeded under
conditions of 37°C, 5% CO,, using a stage-top incubator (STX
series, Tokai Hit, Japan) to maintain the culture environ-

ment.

Table 2 Summary of training conditions

Section 3.1 | Section 3.2 Section 3.3
Sample used BS-C-1 cells | HeLa cells Mouse .kldney
sections
NIS.ai Convert.ai Segment.ai
o Input | Phase contrast image | Bright field image
Training -
Image | Qutput Fluorescence image of Glome_rular
cellular nucleus region
Image size 512 x 512 pixels 2048 x 2048 pixels
Numbgr of trained 70 75 78
images
Iterations 1000

For Convert.ai training, we prepared sample images in
which the cell density condition was numbered from 20% to
120%, and after training under the conditions presented in
Table 2 (Section 3.1 items), we applied the trained model to
the time lapse images of a different field of view from the
training data. The inference accuracy according to Convert.
ai was evaluated based on the growth curve of the number
of nuclei and F-score. The growth curve is a graph showing
time lapsed alterations in the nuclei number of the same
visual field, plotting the quantified number of cell nuclei

using existing NIS-Elements image analysis functions.

F-score is a common index that indicates the inference accu-
racy in machine learning. The closer it is to 1, the higher the
accuracy. In addition, it was calculated based on whether or
not the center of gravity of cell nuclei in ground truth fluo-
rescence images and Convert.ai inferred the existence of
images within 10 pixels.

The obtained results confirmed that localization of cell
nuclei inferred by Convert.ai exhibits almost the same local-
ization as ground truth fluorescent images (Fig. 2, white
arrowhead). Furthermore, the growth curve also exhibited
a curve very close to the results from ground truth, based
on fluorescent images, and it verified that the inference
accuracy was maintained, even when cell density changed
(Fig. 3). It was demonstrated that F-score value for Convert.
ai is higher than 0.90, if cell density is up to around 80%. It

Input Input
+ NIS.ai Inference
4 4

+ Ground Tth

Ground Truth NIS.ai Inference

| 4

Fig. 2 Comparison of ground truth image of cell nuclei fluores-

cence and inference image from NIS.ai.
From top left, phase contrast image input into NIS.ai, and input
image overlayed with ground truth (red), and input image over-
layed with NIS.ai inference (yellow) fluorescence image. Bottom
shows ground truth and NIS.ai inferred cell nuclei fluorescence
image. White arrowhead indicates the same cell nucleus. Scale
bar is 80 pm.
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Fig. 3 Comparison of ground truth image of cell nuclei
fluorescence, and growth curve of number of cell
nuclei using inferred images from NIS.ai.
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Table 3 Accuracy of cell nuclei inference by NIS.ai

Cell Number of cell nuclei
density Ground NIS.ai True False False F-score
%) truth "~ Positive Negative Positive
30 24 22 22 22 0 0.96
50 65 63 62 3 1 0.97
80 73 69 67 6 2 0.94
100 101 99 89 12 10 0.89

was also shown that Convert.ai can infer with high accuracy,
if cell density is around 100%, usually difficult to recognize
border between cells.

From the above verification results, it can be deduced that
by adopting the Convert.ai function of NIS.ai, cell nuclei can
be inferred with high accuracy from unstained images with
training, using realistic numbers of data. Utilizing NIS.ai can
also save the fluorescence wavelength band used in fluores-
cence microscopy, making it a useful tool for multicolor
observation in basic research fields. Furthermore, its use is
also anticipated in clinical research in which valuable sam-
ples, such as those derived from patient disease tissues, are

subject to analysis.

3.2. Avoiding effects of stain reagents with digital stain-
ing

Sample staining involves problems other than cost, labor,
or variations in results between experimenters. Owing to the
fact that toxicity caused by the addition of staining reagents
and irradiated light for fluorescent images acquisition affects
cellular dynamics, it is essential that conditions for reagent
use and optical configuration of microscope are sufficiently
examined. In addition, in the field of regenerative medicine
where cells and tissues are returned to a living body, a prob-
lem exists, as the total sample examination with staining
cannot be performed. It is possible to circumvent these chal-
lenges by adopting fluorescent digital staining with NIS.ai. In
this section, we introduce verification results using Hoechst.
Hoechst is a widely used staining reagent for cell nuclei
detection, and staining with it is known to produce toxic and
phototoxic substances [2].

We used Hela cells for verification samples, and per-
formed image acquisition with the same device configuration
and environment for the verification as described in Section
3.1. We prepared two experimental groups to verify the
effects of reagents. One was a sample of cell nuclei stained
with Hoechst prior to image acquisition (“Stained with

Hoechst” group), and the other was an unstained sample

that applied the NIS.ai trained model (“Unstained (NIS.ai)”
group). We acquired time lapse images of the two samples,
and adopted them for quantitative analysis. Evaluate the
inference accuracy of the unstained NIS.ai group, Hoechst
staining was performed immediately before the last image
acquisition, and ground truth images were acquired. For
NIS.ai training data, we separately acquired images of sam-
ples with cell density conditions numbered from 20% to
120%, after staining with Hoechst. Subsequently, we prepared
a model that trained these images under the conditions in
Table 2 (Section 3.2 items) using Convert.ai, and output
fluorescent images of cell nuclei from the input phase con-
trast images. Cell nuclei were detected and quantified for the
Hoechst and unstained NIS.ai groups, respectively, and
growth curves were prepared.

Based on the obtained results, we found that cells in the
stained with Hoechst and unstained NIS.ai groups of compa-
rable density at the start of time lapse were fewer in the
stained with Hoechst group than in the unstained NIS.ai
group after 60 h, owing to reagents and phototoxicity (Fig.
4). Growth curves also verified that cell growth was sup-
pressed in the stained with Hoechst group (Fig. 5). This
indicated that NIS.ai could achieve sufficiently higher accu-
racy than ground truth images at the final point of the time
lapse (Fig. 5, red dot).

These results indicate that correct cell behavior could be

observed by fluorescent digital staining using NIS.ai. It is

Unstained (NIS.ai)

Stained with Hoechst

60 hour

Fig. 4 Image comparison of cells stained with Hoechst prior
to starting image acquisition (left) and unstained
cells (right)

Left and right columns illustrate the cell nuclei regions stained

with Hoechst (blue) and inferred by NIS.ai (yellow), respec-

tively, with their respective phase contrast images superimposed
over them. Same field of view images at 0 h and 60 h are
arranged vertically. Scale bar is 100 pm.
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Fig. 5 Comparison of growth curves of number of cell nuclei
using cells stained with Hoechst prior to starting
image acquisition (blue) and inferred images by NIS.
ai of unstained cells (yellow)

Shows the mean += SD (n = 3) at each point in time. Unstained

cells were stained with Hoechst at the final point, and were con-

sidered ground truth (red dot).

assumed that ascertaining the behavior of biological sample
precisely, without incurring the effects of staining reagents
and phototoxicity, will become increasingly important in the

fields of biology, medical science, and drug discovery.

3.3. Automated workflow of acquiring microscope images

In studies using conventional microscope images, research-
ers present only representative microscope images of research
subjects, which are often discussed in terms of qualitative
results. However, in recent years, technical progress has
made it possible to acquire and analyze a large number of
images, and it has become necessary to quantitatively evalu-
ate microscope images. Hence, manual image acquisition
using a microscope is becoming a serious challenge in case
of observing large samples, such as histological sections [3],
as well as large-scale screening in drug discovery research
[4]. For example, it is known that the specific structure of

cells present in the glomerulus is lost in the kidney disease

Image acquisition of
entire tissue section
(scale bar: 1mm)

Segmentation of
glomeruli

PSS centroids
o5
GA3

Achieve the acquisition
sequence with NIS-Elements

Identifying the

Table 4 Number of glomerulus detected by NIS.ai and infer-
ence accuracy

Ground Truth  NIS.ai False Negative False Positive

97 103 1 (1.0%) 7 (7.2%)

nephrotic syndrome [5]. To detect such differences in char-
acteristics, a microscope user needs to use a high-magnifica-
tion objective lens and acquire images after visually confirm-
ing the position of specific structures successively, which
places a huge burden on image acquisition and analysis
tasks. By incorporating region segmentation by NIS.ai into
the image acquisition steps with NIS-Elements, it is possible
to narrow down image acquisition regions to specific struc-
tures, and thus reduce the burden required of users when
conducting image acquisition and analysis. In this section,
we present an example of automatically detecting and
acquiring the glomerulus images from a kidney section
sample.

For verification, we adopted a sample in which a mouse-
derived kidney section was treated with Elastica-Masson
stain, which tags connective tissues such as elastic and col-
lagen fibers. A Ti2-E inverted microscope equipped with an
A1R confocal microscope system was used for image acqui-
sition. For image acquisition, we used a 20x objective lens
(CFI Plan Apo Lambda 20X 0.75NA, Nikon, Japan) and
CMOS camera (ORCA-Fusion, Hamamatsu Photonics,
Japan) to detect the position of the glomerulus. For detailed
structural observations, we used a 100x objective (CFI SR
HP Apo TIRF 100XC Oil. 1.49NA, Nikon, Japan) and confo-
cal microscope system. We prepared training data, showing
a region of the glomerulus in 78 images cut out from full
images of two kidney sections obtained by joining multiple
images taken with a 20x objective lens. In addition, we con-

structed a model to output the glomerulus region, according

Image acquisition of
@ high magnification
glomeruli with

# confocal microscopy

JOBS

gty
Fig. 6 Overall image of automated workflow from kidney glomerulus detection to high magnification
image acquisition.
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to the bright field image input from the Segment.ai function
(Table 2, Section 3.3 items).

Fig. 6 illustrates a workflow for automating the steps from
bright field image acquisition to glomerulus fluorescent
image acquisition: 1) construction of kidney total image via
bright field image acquisition and stiching, 2) inference of
the glomerular region (Segment.ai), 3) calculation of glom-
erulus center-of-gravity coordinates, and 4) acquisition of
glomerulus fluorescent images using a confocal microscope
system.

Based on the obtained results, there were a few false
positives of the glomerulus region with NIS.ai processing
alone; however, only the glomerulus regions were accurately
detected by incorporating filter processing, based on area
and circularity in GA3 (Fig. 3, red frame). Furthermore,
compared to the manual glomerulus detection results, false
negatives or positives in NIS.ai processing remained at 1% or
7.2% for each.

From the above, it was demonstrated that regions that are
difficult to detect via existing image processing can be accu-
rately detected by NIS.ai. In particular, the lack of false
negatives is crucial because in the case of false positives,
captured images can be selected later; however, false nega-
tive regions need to be re-acquired images. In particular,
missing regions that should be detected in clinical testing
(for example, detection of cancerous areas) can be fatal.
Furthermore, if NIS-Elements is used in combination with
NIS.ai to set a sample in a microscope and commence image
acquisition, a large number of images can be acquired by the
experimenter (user) without being constrained in front of the
microscope; hence, drastic labor saving scans can be
expected. It is expected that in the future, the acquisition
and analysis of large amounts of data for the purpose of
quantification will increase in the fields of biology, medicine,
and drug discovery. Therefore, the usefulness of automatic
image acquisition and image processing workflows utilizing

NIS.ai will increase.

4 Conclusion

NIS.ai is capable of high-precision digital staining and
segmentation, and is effective in applied studies, such as in
basic and clinical researches. Although not addressed in this
paper, NIS.ai also provides functions for eliminating noise in
microscope images and out-of-focus fluorescence leakage.
Owing to the combination of these functions and future func-
tional extensions, we further aim to contribute to improving
user research efficiency and the discovery of novel findings
by providing digital image processing and quantification
results that cannot be realized by microscopes alone.

We are grateful to the assistant professor Matsui of the
Department of Nephrology, Graduate School of Medicine,
Faculty of Medicine, Osaka University, for providing us with

mouse kidney-section samples.
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