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ニコンは100年以上にわたり光学ガラスの研究開発を実施しており，光学ガラスはカメラや顕微鏡など多数のニコン製

品に搭載されている．光学ガラス開発において，“ガラスの組成設計”は，所望の物理特性を有するようにガラス構成元
素の種類や量を調整する重要なプロセスであり，専門的な知識や経験に基づく試行錯誤が必要となる．一方，近年，機
械学習を用いることで材料開発を加速する試みが注目されている．本研究では，機械学習による光学ガラス開発の高速
化を目指す取組みの一環として，機械学習の一手法であるベイズ最適化を組成設計に適用する．具体的には，国際ガラ
スデータベース INTERGLAD のデータにおいて，ベイズ最適化を用いて高アッベ数組成を探索する．さらに，獲得関数
Upper Confidence Bound のパラメーター調整および，機械学習モデルの入力パラメーター，すなわち，記述子の選
定が，ベイズ最適化の探索性能に与える効果を検証する．

Nikon has developed optical glass for over 100 years, and the optical glass has been installed in many 
Nikon products such as cameras and microscopes. In the development of the optical glass, the 
composition design of glass is important, in which the types and amounts of constituent elements are 
adjusted to obtain glass with desirable physical properties (e.g., refractive index and Abbe number), and 
numerous trials and errors based on the knowledge and experience of experts are required. By contrast, 
in material sciences, attempts to accelerate material developments using machine learning has been 
reported recently. In this study, we apply Bayesian optimization, a machine learning method, to the 
composition design of glass to accelerate the development of optical glass. It is demonstrated that 
compositions with high Abbe numbers can be identified using Bayesian optimization based on data from 
the International Glass Database, INTERGLAD. In addition, we discuss the effects of setting the 
parameter of an acquisition function, upper confidence bounds, and descriptors to the search 
performance of Bayesian optimization.

光学ガラス，組成設計，アッベ数，機械学習，ベイズ最適化
optical glass, composition design, Abbe number, machine learning, Bayesian optimization

　　　　　 　　　　　　　　　　　　　　　　　　　　　　　　　　　　　　　　　　　　　　　　　　　　　　　　　　　　

1  Introduction

　Glass is used in various applications, such as camera 

lenses, windows, and electronic displays. The specifications 

of glass properties differ depending on the application. For 

example, in the development of optical products such as 

camera lenses, the optical properties of glass, such as its 

refractive index and Abbe number νd, must be adjusted to 

satisfy the specifications [₁],[₂]. Composition design is a 

typical method for controlling the physical properties of 

glass because its properties depend significantly on its com-

position. Generally, composition design requires the knowl-

edge and experience of experts; furthermore, it is time 

consuming because the number of element combinations is 

significant.

　Recently, machine learning has garnered attention as an 

effective tool for accelerating the development of materials, 

including glass [₃]–[₁₀]. We have previously focused on one 

of the machine learning methods, i.e., Bayesian optimization 

(BO), which proposes the next experimental condition (e.g., 

chemical compositions) based on previous experimental 

data. BO has been applied to the development of various 

materials such as thermoelectric materials, shape-memory 

alloys, and oxide glass [₇]– [₁₀]. Unlike other optimization 

methods, BO can search for the next experimental condition 

in an extrapolated area because it employs acquisition func-

tions that indicate the effectiveness of the experiment based 

on the predicted values and their uncertainties [₁₁], [₁₂]. 
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Several types of acquisition functions are known, and we 

have focused on one of the acquisition functions, i.e., the 

upper confidence bound (UCB), which can achieve a balance 

between exploitation and exploration by setting a parameter 

for experiments [₁₃]– [₁₅]. For example, in glass develop-

ment, if a glass composition that differs significantly from 

observed ones is required, then the exploration of BO 

should be enhanced by adjusting the parameter. Hence, BO 

with the UCB acquisition function is expected to benefit the 

composition design of glass.

　In this study, we applied BO with the UCB acquisition func-

tion to optimize glass compositions to identify high νd compo-

sitions using the International Glass Database (INTERGLAD) 

[₁₆]. We present the dependence of the search performance 

of BO on the balance between exploitation and exploration. 

Subsequently, we discuss the effect on the search perfor-

mance with respect to the selection of input variables, i.e., 

descriptors, using random forest (RF) analysis. Generally, 

the selection of input variables is important to achieve good 

performances in machine learning [₆]–[₈], [₁₀].

2  Methods

　The composition and νd data were obtained from the 

INTERGLAD [₁₆]. Some compositions that exhibited incor-

rect values were removed. We used the data of only the sili-

cate system for which the amount of SiO₂ was more than ₀ 
mol%. A total of ₇₁₈₁ compositions were used. The composi-

tion included the following ₅₇ components: Al₂O₃, As₂O₃, 

B₂O₃, BaO, BeO, Bi₂O₃, CaO, CdO, Ce₂O₃, CeO₂, Co₂O₃, 

CoO, Cs₂O, CuO, Dy₂O₃, Er₂O₃, Fe₂O₃, Ga₂O₃, Gd₂O₃, GeO₂, 

HfO₂, In₂O₃, K₂O, La₂O₃, Li₂O, Lu₂O₃, MgO, MnO, MnO₂, 

MoO₂, MoO₃, Na₂O, Nb₂O₃, Nb₂O₅, Nd₂O₃, NiO, P₂O₅, PbO, 

Pr₂O₃, Rb₂O, SO₃, Sb₂O₃, Sb₂O₅, Sc₂O₃, SiO₂, Sm₂O₃, SnO, 

SnO₂, SrO, Ta₂O₅, TeO₂, TiO₂, Tl₂O, WO₃, Y₂O₃, ZnO, and 

ZrO₂. Fig. ₁ shows the histogram of νd for the compositions. 

A histogram of the appearance of the components is shown 

in Fig. ₂. We set the target value of νd
 to ₇₀ and analyzed the 

speed in which BO identifies a composition with a νd exceed-

ing ₇₀. Approximately ₁% of the total compositions indi-

cated νd values exceeding ₇₀.
　We used typical descriptors based on elemental physical 

properties [₄], [₆]– [₁₀]. The descriptors were calculated 

from the numbers of elements in the compositions and the 

following ₁₁ elemental properties: atomic number, Men-

deleev number, column and row numbers in the periodic 

table, covalent radius, Ahrens ionic radius, electronegativity, 

first ionization energy, melting point, atomic weight, and 

density [₁₇]– [₂₁]. Specifically, two descriptors, mean xmean 

and standard deviation xstd, were calculated for each property 

in each composition as follows:

Fig. 2　Histogram of appearance components for collected compositions. Logarithmic scale is used for y-axis.

Fig. 1 Histogram of νd for collected compositions. Logarithmic 
scale is used for y-axis.



38

Nikon Research Report Vol.3 2021

　　 x
y x
x

i i i

i i
mean = ∑

∑
,  (₁)

　　
x

y x x
x

i i i

i i
std

mean= −∑
∑

( )
,

2  
(₂)

where i represents the element species, xi the atomic fraction 

in the composition, and yi the value of the physical property. 

In total, ₂₂ descriptors were used for each composition. The 

set of descriptors was the same as in those in previous stud-

ies [₇], [₈]. The descriptors in the training data were nor-

malized using the mean and standard deviation for each 

descriptor, i.e., the mean and variance of the values of the 

descriptors were set to zero and one, respectively. Descrip-

tors are often normalized to equalize their scales [₈]. Fur-

thermore, the importance score for each descriptor in the 

prediction of νd was calculated by fitting all the data (compo-

sitions and their νd values) via RF regression. RF regression 

is a decision tree ensemble method that can output the 

importance of each descriptor [₅], [₁₇]. The descriptors with 

high importance contribute significantly to the prediction 

of νd. We executed RF regression using the scikit-learn pack-

age [₂₂]. Fig. ₃ shows the importance of each descriptor. We 

analyzed the effect of descriptor selection on the BO search 

performance by comparing two cases. In the first case, all 

descriptors were used. In the second case, the following ₁₁ 
descriptors with higher importance were used: density xmean 

and xstd, Ahrens ionic radius xmean and xstd, atomic weight xmean 

and xstd, row numbers in the periodic table xmean, column 

numbers in the periodic table xmean, atomic number xmean and 

xstd, and melting point xstd.

　The procedure for BO in this study is as follows: five com-

positions were randomly selected as initial training data. The 

remaining compositions were composed as initial test data. 

The training data were fitted using Gaussian process regres-

sion. Gaussian process regression is a Bayesian inference 

method that outputs the uncertainty of prediction and the 

predicted value, and it is typically used in BO. We used a 

GPy library to implement Gaussian process regression [₂₃]. 

We used a typical kernel function, i.e., the Gaussian kernel, 

for Gaussian process regression. Using Gaussian process 

regression, the predicted values and uncertainties (i.e., stan-

dard deviations) were obtained for each composition of the 

test data. Subsequently, the UCB acquisition functions aUCB 

for the compositions were calculated as the criterion, as fol-

lows:

　　aUCB = μ + κσ, (₃)
where μ and σ are the predicted values and standard devia-

tion, respectively; κ is a hyperparameter that controls the 

balance between exploitation and exploration. Although sev-

eral expressions for the UCB have been proposed [₁₃]–

[₁₅], we used a simple one, as shown in Eq. (₃), which 

comprises only three parameters: μ, σ, and κ. By setting κ to 

a higher value, a composition different from that in the train-

ing data is proposed for BO. In this study, we performed BO 

with different values of κ to evaluate the dependence of BO 

performance on the balance between exploitation and explo-

ration. We performed an experiment and observed the result 

under the condition with the highest values of acquisition 

functions in BO. Subsequently, we observed the νd of a com-

position with the highest value of aUCB, i.e., we added the 

composition and its νd into the training data and removed 

them from the test data. This process was repeated until 

the νd value of the highest aUCB composition exceeded ₇₀. In 

this study, when a composition with a high νd was identified 

via a small number of observations, the search performance 

of BO was regarded as superior. We executed the BO search 

for ₅₀ patterns of the initial training data at each κ value.

Fig. 3 Importance scores for descriptors calculated using RF. 
Abbreviations: DN, density; AIR, Ahrens ionic radius; RNP, 
row numbers in the periodic table; AN, atomic number: 
CNP, column numbers in the periodic table; AW, atomic 
weight; MP, melting point; CR, covalent radius; EN, elec-
tronegativity; IE, first ionization energy; MN, Mendeleev 
number.
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3  Results and Discussion

　Fig. ₄ shows the typical results of the BO in ₃₀ observa-

tions for five patterns of the initial training data for different 

values of κ with ₂₂ descriptors. As shown in Fig. ₄, when κ = 

₄, compositions with νd > ₇₀ were identified until the ₃₀th 

observation. However, for the other values of κ, compositions 

with a high νd were not identified. BO with appropriate κ 

values enable compositions with high νd to be identified rap-

idly. Fig. ₅ shows the relationship between κ and the average 

number of BO observations required to identify composi-

tions with a high νd in ₅₀ patterns of the initial training data 

using all the selected descriptors. In both descriptors, 

when κ is zero, the number of observations is high. In the 

case involving all descriptors, when the value of κ was less 

than ₂₀, the average number of observations became the 

minimum. Subsequently, when the value of κ exceeded ₂₀, 
the average number of observations increased. Because a 

large κ indicates that the uncertainty in the UCB (Eq. (₃)) is 

significant, a vast composition region is searched during BO 

and compositions with a high νd cannot be identified. By 

contrast, in the case involving selected descriptors, when κ 

is ₂₀ or more, the average number of observations becomes 

the minimum and is similar for each κ. The average number 

of observations was smaller when the selected descriptors 

were used compared with when all descriptors were used. 

Therefore, these results suggest that tuning the UCB param-

eter and selecting descriptors can improve the search per-

formance of BO. It is noteworthy that when using the 

selected descriptors, as κ increases, the average number of 

observations does not decrease, unlike the case for all 

descriptors. We speculate that the effect of uncertainty is 

less prominent when using the selected descriptors than 

when using all descriptors for a large value of κ in this study 

because the dimensions of the selected descriptors are 

smaller than those of all the descriptors.

4  Conclusion

　We demonstrated that BO with a UCB acquisition function 

enabled compositions with high νd to be identified using data 

from the INTERGLAD. We demonstrated that the search 

performance of BO depended significantly on the UCB. Fur-

thermore, BO with selected descriptors based on their 

importance scores obtained from RF was more effective in 

identifying compositions with high νd than BO with all 

descriptors. Therefore, parameter tuning and the selection of 

appropriate descriptors are crucial for rapidly identifying 

compositions with desirable properties.
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Fig. 4 The highest νd values until 30th observation with all (non-selected) descriptors with different initial training data for five patterns 
at the different values of UCB parameter κ. Colors and dotted lines indicate the results for individual initial training data.

Fig. 5 Average number of observations required to identify νd 
exceeding 70 for various values of κ using all (non-selected) 
and selected descriptors.
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tion, for providing advice regarding glass science.
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