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Bayesian Optimization of Glass Compositions with
Upper Confidence Bound and Selected Descriptors
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Nikon has developed optical glass for over 100 years, and the optical glass has been installed in many
Nikon products such as cameras and microscopes. In the development of the optical glass, the
composition design of glass is important, in which the types and amounts of constituent elements are
adjusted to obtain glass with desirable physical properties (e.g., refractive index and Abbe number), and
numerous trials and errors based on the knowledge and experience of experts are required. By contrast,
in material sciences, attempts to accelerate material developments using machine learning has been
reported recently. In this study, we apply Bayesian optimization, a machine learning method, to the
composition design of glass to accelerate the development of optical glass. It is demonstrated that
compositions with high Abbe numbers can be identified using Bayesian optimization based on data from
the International Glass Database, INTERGLAD. In addition, we discuss the effects of setting the
parameter of an acquisition function, upper confidence bounds, and descriptors to the search

performance of Bayesian optimization.
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1 Introduction

Glass is used in various applications, such as camera
lenses, windows, and electronic displays. The specifications
of glass properties differ depending on the application. For
example, in the development of optical products such as
camera lenses, the optical properties of glass, such as its
refractive index and Abbe number vy, must be adjusted to
satisfy the specifications [1],[2]. Composition design is a
typical method for controlling the physical properties of
glass because its properties depend significantly on its com-
position. Generally, composition design requires the knowl-
edge and experience of experts; furthermore, it is time

consuming because the number of element combinations is
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significant.

Recently, machine learning has garnered attention as an
effective tool for accelerating the development of materials,
including glass [3]-[10]. We have previously focused on one
of the machine learning methods, i.e., Bayesian optimization
(BO), which proposes the next experimental condition (e.g.,
chemical compositions) based on previous experimental
data. BO has been applied to the development of various
materials such as thermoelectric materials, shape-memory
alloys, and oxide glass [7]-[10]. Unlike other optimization
methods, BO can search for the next experimental condition
in an extrapolated area because it employs acquisition func-
tions that indicate the effectiveness of the experiment based

on the predicted values and their uncertainties [11], [12].
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Several types of acquisition functions are known, and we
have focused on one of the acquisition functions, i.e., the
upper confidence bound (UCB), which can achieve a balance
between exploitation and exploration by setting a parameter
for experiments [13]-[15]. For example, in glass develop-
ment, if a glass composition that differs significantly from
observed ones is required, then the exploration of BO
should be enhanced by adjusting the parameter. Hence, BO
with the UCB acquisition function is expected to benefit the
composition design of glass.

In this study, we applied BO with the UCB acquisition func-
tion to optimize glass compositions to identify high vq4 compo-
sitions using the International Glass Database INTERGLAD)
[16]. We present the dependence of the search performance
of BO on the balance between exploitation and exploration.
Subsequently, we discuss the effect on the search perfor-
mance with respect to the selection of input variables, i.e.,
descriptors, using random forest (RF) analysis. Generally,
the selection of input variables is important to achieve good

performances in machine learning [6]-[8], [10].

2 Methods

The composition and vq data were obtained from the
INTERGLAD [16]. Some compositions that exhibited incor-
rect values were removed. We used the data of only the sili-
cate system for which the amount of SiO, was more than 0
mol%. A total of 7181 compositions were used. The composi-
tion included the following 57 components: Al;Os, As;Os,
B.0;, BaO, BeO, Bi,03;, Ca0, CdO, Ce;03, CeO;, Co0:03,
CoO0, Cs;0, CuO, Dy:0s, Er,0;, Fe;03, Ga;03, Gd20s3, GeO,,
HfO,, In,0;, K20, La;0s, Li:O, Luy03, MgO, MnO, MnO,,
MoO;, MoOs, Na;O, Nb;Os, Nb;Os, Nd03, NiO, P,0s, PhO,
Pr;03, Rb,0, SO;, Sh,03, Sh.0s5, Sc:03, SiO2, Smy03, SnO,
Sn0O,, SrO, Ta;0s, TeO,, TiO,, T,O, WOs;, Y203, ZnO, and
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Fig. 1 Histogram of v, for collected compositions. Logarithmic

scale is used for y-axis.

ZrQO,. Fig. 1 shows the histogram of v4 for the compositions.
A histogram of the appearance of the components is shown
in Fig. 2. We set the target value of v4to 70 and analyzed the
speed in which BO identifies a composition with a v4 exceed-
ing 70. Approximately 1% of the total compositions indi-
cated vq values exceeding 70.

We used typical descriptors based on elemental physical
properties [4], [6]-[10]. The descriptors were calculated
from the numbers of elements in the compositions and the
following 11 elemental properties: atomic number, Men-
deleev number, column and row numbers in the periodic
table, covalent radius, Ahrens ionic radius, electronegativity,
first ionization energy, melting point, atomic weight, and
density [17]-[21]. Specifically, two descriptors, mean ¥mean
and standard deviation x4, were calculated for each property

in each composition as follows:
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Fig. 2 Histogram of appearance components for collected compositions. Logarithmic scale is used for y-axis.

37



Nikon Research Report Vol.3 2021

i YiXi
mean — —_ 1
. ik M
. e — 2 .
xstd — z 1 (yl xmean ) xi , (2)

2iXi

where 7 represents the element species, x; the atomic fraction
in the composition, and y; the value of the physical property.
In total, 22 descriptors were used for each composition. The
set of descriptors was the same as in those in previous stud-
ies [7], [8]. The descriptors in the training data were nor-
malized using the mean and standard deviation for each
descriptor, i.e., the mean and variance of the values of the
descriptors were set to zero and one, respectively. Descrip-
tors are often normalized to equalize their scales [8]. Fur-
thermore, the importance score for each descriptor in the
prediction of v4 was calculated by fitting all the data (compo-
sitions and their vqvalues) via RF regression. RF regression
is a decision tree ensemble method that can output the
importance of each descriptor [5], [17]. The descriptors with
high importance contribute significantly to the prediction
of vq. We executed RF regression using the scikit-learn pack-
age [22]. Fig. 3 shows the importance of each descriptor. We
analyzed the effect of descriptor selection on the BO search
performance by comparing two cases. In the first case, all
descriptors were used. In the second case, the following 11
descriptors with higher importance were used: density ¥mean
and xq, Ahrens ionic radius ¥mean and xsq, atomic weight Xmean
and xyq, row numbers in the periodic table Xpem, column
numbers in the periodic table Xpeaw, atomic number Xyea, and
Xswa, and melting point xgq.

The procedure for BO in this study is as follows: five com-
positions were randomly selected as initial training data. The
remaining compositions were composed as initial test data.
The training data were fitted using Gaussian process regres-
sion. Gaussian process regression is a Bayesian inference
method that outputs the uncertainty of prediction and the
predicted value, and it is typically used in BO. We used a
GPy library to implement Gaussian process regression [23].
We used a typical kernel function, i.e., the Gaussian kernel,
for Gaussian process regression. Using Gaussian process
regression, the predicted values and uncertainties (i.e., stan-
dard deviations) were obtained for each composition of the
test data. Subsequently, the UCB acquisition functions aycg
for the compositions were calculated as the criterion, as fol-
lows:

aucs = U + KO, )
where u and o are the predicted values and standard devia-
tion, respectively; « is a hyperparameter that controls the

balance between exploitation and exploration. Although sev-
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Fig. 3

CNP, column numbers in the periodic table; AW, atomic
weight; MP, melting point; CR, covalent radius; EN, elec-
tronegativity; IE, first ionization energy; MN, Mendeleev
number.

eral expressions for the UCB have been proposed [13]-
[15], we used a simple one, as shown in Eq. (3), which
comprises only three parameters: 4, o, and . By setting « to
a higher value, a composition different from that in the train-
ing data is proposed for BO. In this study, we performed BO
with different values of « to evaluate the dependence of BO
performance on the balance between exploitation and explo-
ration. We performed an experiment and observed the result
under the condition with the highest values of acquisition
functions in BO. Subsequently, we observed the v4 of a com-
position with the highest value of aycg, i.e., we added the
composition and its vq into the training data and removed
them from the test data. This process was repeated until
the vq value of the highest aycs composition exceeded 70. In
this study, when a composition with a high v4 was identified
via a small number of observations, the search performance
of BO was regarded as superior. We executed the BO search

for 50 patterns of the initial training data at each x value.
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Fig. 4 The highest v values until 30th observation with all (non-selected) descriptors with different initial training data for five patterns

at the different values of UCB parameter x. Colors and dotted lines indicate the results for individual initial training data.

3 Results and Discussion

Fig. 4 shows the typical results of the BO in 30 observa-
tions for five patterns of the initial training data for different
values of x with 22 descriptors. As shown in Fig. 4, when x =
4, compositions with vq > 70 were identified until the 30th
observation. However, for the other values of x, compositions
with a high v4 were not identified. BO with appropriate x
values enable compositions with high v4to be identified rap-
idly. Fig. 5 shows the relationship between x and the average
number of BO observations required to identify composi-
tions with a high v, in 50 patterns of the initial training data
using all the selected descriptors. In both descriptors,
when « is zero, the number of observations is high. In the
case involving all descriptors, when the value of x was less
than 20, the average number of observations became the
minimum. Subsequently, when the value of x exceeded 20,
the average number of observations increased. Because a
large « indicates that the uncertainty in the UCB (Eq. (3)) is
significant, a vast composition region is searched during BO
and compositions with a high v4 cannot be identified. By
contrast, in the case involving selected descriptors, when «
is 20 or more, the average number of observations becomes
the minimum and is similar for each x. The average number
of observations was smaller when the selected descriptors
were used compared with when all descriptors were used.
Therefore, these results suggest that tuning the UCB param-
eter and selecting descriptors can improve the search per-
formance of BO. It is noteworthy that when using the

selected descriptors, as x increases, the average number of
observations does not decrease, unlike the case for all
descriptors. We speculate that the effect of uncertainty is
less prominent when using the selected descriptors than
when using all descriptors for a large value of « in this study
because the dimensions of the selected descriptors are

smaller than those of all the descriptors.
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and selected descriptors.

4 Conclusion

We demonstrated that BO with a UCB acquisition function
enabled compositions with high v4 to be identified using data
from the INTERGLAD. We demonstrated that the search
performance of BO depended significantly on the UCB. Fur-
thermore, BO with selected descriptors based on their
importance scores obtained from RF was more effective in
identifying compositions with high v4 than BO with all
descriptors. Therefore, parameter tuning and the selection of
appropriate descriptors are crucial for rapidly identifying

compositions with desirable properties.
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