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ライフサイエンスの分野で Artificial Intelligence による画像処理の応用が広がりつつある．我々は，顕微鏡システ

ム用の画像統合ソフトウェアである NIS-Elements に，Deep Learning を用いた画像処理技術である NIS.ai を搭載し
た．NIS.ai は NIS-Elements に統合することで，ユーザーが容易に先進的な Deep Learning 技術を利用することがで
きる特徴を持ち，画像の生成や領域分割の実施が可能である．本稿では NIS.ai の活用により，正確な解析結果の取得と
ユーザーの作業負荷低減が可能であることを紹介する．まず，非蛍光染色細胞の画像に対し NIS.ai を用いた解析が，蛍
光染色細胞の画像を用いた従来の解析と同等の精度となることを確認した．次に，蛍光撮影において問題となる染色試
薬による影響や蛍光撮影時に生じる光毒性を NIS.ai の活用により回避出来ることを実証した．最後に，NIS-Elements
が制御する顕微鏡撮影手順に NIS.ai を組み込むことにより，従来の画像解析技術の利用では達成が困難であった自動撮
影が可能となり，新たな価値を提供できることを示した．

The application of artificial intelligence in image processing is being investigated extensively in life 
sciences. We developed and installed NIS.ai, an image processing technology that uses deep learning, 
in NIS-Elements, which is an imaging software for microscope systems. By integrating NIS.ai with NIS-
Elements, NIS.ai enables users to use advanced deep learning technology easily with tasks such as 
image conversion, segmentation and so on. In this study, we show that users can obtain accurate 
analysis results with minimal effort using NIS.ai. First, we confirm that the analysis using NIS.ai for images 
of unstained cells exhibits the same accuracy as that of the conventional analysis for images of stained 
cells. Second, we demonstrate that the effects of staining reagents and the phototoxicity that occurs when 
capturing fluorescence images can be avoided by utilizing NIS.ai. Finally, we demonstrate that by 
incorporating NIS.ai into NIS-Elements, automatic imaging, which is difficult to achieve using conventional 
image analysis, can be achieved, and a new value can be obtained.

ライフサイエンス，顕微鏡，画像処理，人工知能，深層学習
life science, microscopy, image analysis, artificial intelligence, deep learning

　　　　　 　　　　　　　　　　　　　　　　　　　　　　　　　　　　　　　　　　　　　　　　　　　　　　　　　　　　

1  Introduction

　In the field of life science, digital image processing is 

being conducted during the observation of cells with bio-

logical microscopes to automate cell counting and classifica-

tion. Recently, widespread studies have been conducted on 

image-processing technology using deep learning, which is 

a type of artificial intelligence (AI) that is applied to segmen-

tation, classification, digital staining, sharpening, and super-

resolution [₁].

　NIS-Elements is an imaging software for microscope sys-

tems with microscope and camera control, image processing, 

analysis, and reporting functions. Nikon previously equipped 

NIS-Elements with a microscope image-processing functions, 

applying several deep learning techniques. In this paper, we 

introduce NIS.ai behind the functions that may be adopted 

for digital staining (Convert.ai) and segmentation (Segment.

ai), as well as their applications in life science.

2  Microscope image processing functions 
applying deep learning

　Image processing technologies, such as morphological 

transformation, and non-deep machine learning technologies, 

such as random forest can be adopted for relatively simple 

segmentation and sharpening. However, proficient skills and 

individual adjustments, such as designing image filters, are 

required to improve the quality of processing results.
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　The two NIS.ai functions (Convert.ai, Segment.ai) intro-

duced in this paper adopt convolutional neural networks, a 

type of deep learning, and employ supervised learning, 

which require training data. Because the design of image 

filters is automatically performed in its training process, deep 

learning does not require the traditional image processing or 

proficient skills required for machine learning. In addition, it 

is characterized by further improving accuracy by increasing 

the training dataset size or the number of training iterations.

　When using deep learning, hyperparameter usually needs 

to be tuned, depending on the tasks to be applied. Tuning 

hyperparameters is a trial-and-error task, which is generally 

time- and labor intensive. However, since NIS.ai adopts opti-

mized networked construction for microscope images, opti-

mal results can be easily obtained with just a few settings 

even if the user is not familiar with deep learning.

Table 1　Settings for NIS.ai training

Convert.ai
Iterations

Dynamic range adaptation (on/off)

Segment.ai

Iterations

Dynamic range adaptation (on/off)

Detect touching object (on/off)

　Table ₁ presents the settings for NIS.ai training. Iterations 

is an option that specifies the number of training repetitions. 

Although the optimal value depends on the amount of training 

data and variations, a value of approximately ₁₀₀₀ is usually 

acceptable. The training times required to use NVIDIA 

Quadro RTX ₄₀₀₀ to set ₁₀₀₀ iterations are approximately ₃.₅ 
h and ₄.₀ h with Convert.ai and with Segment.ai, respectively, 

and the inference time for images of ₁₆₀₀ x ₁₆₀₀ pixels in the 

same environment is ₁ s or less per image. Although the 

training time is long, this poses no practical challenge because 

it is more important that a trained model, prepared at one 

time by the training, can be used several times with a short 

inference time. ＂dynamic range adaptation＂ is an option for 

specifying when there is little brightness variation in training 

data, while ＂detect touching object＂ is an option for specifying 

when the user wants a highly-precise isolation of objects in 

close proximity to each other in Segment.ai.

　Processing by NIS.ai comprises two phases: a training 

phase for preparing a trained model using user-prepared 

training data, and an inference phase using the training 

results to output inferred images from the target data (Fig. ₁).
　In the training phase, the user needs to prepare an origi-

nal image for conversion, as well as a ground truth image to 

serve as a teacher. The image acquisition function of NIS-

Elements can acquire multi-channel images such as phase 

contrast images and fluorescent images. Users can use 

multi-channel images acquired with NIS-Elements as they 

are, or use images, which are processed with the NIS-Ele-

ments image processing functions, as training data.

　In the inference phase, after the target data have been 

inferred with the trained model, the processing outputs are 

further processed by the NIS-Elements image processing 

functions, and analyzed by counting or tracking. Subsequently, 

the results can be output as graphs or exported to Excel.

　In addition, by adopting a function that automates combina-

tions of NIS-Elements standard image processing and analysis 

processing (GA₃), and a function that automates the analysis 

processing steps from image acquisition with specified com-

plex conditions (JOBS), it is possible to automate the series of 

processes from image acquisition to analysis. Furthermore, 

the analysis can be more efficient by changing the processes 

according to the analysis results. Since NIS.ai is integrated 

into NIS-Elements, it does not only provide AI-processing for 

microscope images, but also facilitates highly convenient, 

automated, and sophisticated analysis.

　In the following sections, we introduce examples of NIS.ai 

applications with such features in life science.

Fig. 1　Processing steps for training and inference

3  Examples of AI Applications in the 
Field of Life Science

　This chapter introduces the following three cases using 

NIS.ai.

　₃.₁. Highly accurate fluorescence image generation using 

unstained microscope images

　₃.₂. Avoiding effects of stain reagents with digital staining

　₃.₃. Automated workflow of acquiring microscope images

3.1.	Highly	accurate	fluorescence	image	generation	using	
unstained	microscope	images

　Samples are stained in biology, medical, and drug discov-
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ery studies to identify and detect specific structures and 

molecules in tissue and cells with a microscope. However, 

staining involves problems such as the cost of reagents, 

complexity of experiments, and varying staining results. 

Furthermore, since samples cannot be reused after staining, 

multiple samples must be prepared during clinical testing. 

This problem is addressed by adopting deep learning to 

output stained images of specific structures from unstained 

microscope images, such as bright field microscopy, which 

is also called digital staining. The Convert.ai of NIS.ai is a 

function that can be applied to this digital staining. In this 

section, we present an example of generating fluorescence 

images of cell nuclei from images acquired via phase con-

trast microscopy.

　For the verification sample, we adopted a BS-C-₁ cell line 

that constantly expresses the fluorescent-tagged protein 

localized on the cell nucleus surface. For observation, we 

used a Ti-E inverted microscope with a ₂₀x objective lens 

(CFI S Plan Fluor ELWD ADM ₂₀XC ₀.₄₅NA, Nikon, 

Japan), and acquired phase contrast images and fluores-

cence images with EMCCD (iXon₃, Andor technology, 

Oxford Instruments, UK). Verification proceeded under 

conditions of ₃₇°C, ₅% CO₂, using a stage-top incubator (STX 

series, Tokai Hit, Japan) to maintain the culture environ-

ment.

Table 2　Summary of training conditions

Section ₃.₁ Section ₃.₂ Section ₃.₃

Sample used BS-C-₁ cells HeLa cells Mouse kidney 
sections

NIS.ai Convert.ai Segment.ai

Training 
Image

Input Phase contrast image Bright field image

Output Fluorescence image of 
cellular nucleus

Glomerular 
region

Image size ₅₁₂ x ₅₁₂ pixels ₂₀₄₈ x ₂₀₄₈ pixels

Number of trained 
images ₇₀ ₇₅ ₇₈

Iterations ₁₀₀₀

　For Convert.ai training, we prepared sample images in 

which the cell density condition was numbered from ₂₀% to 

₁₂₀%, and after training under the conditions presented in 

Table ₂ (Section ₃.₁ items), we applied the trained model to 

the time lapse images of a different field of view from the 

training data. The inference accuracy according to Convert.

ai was evaluated based on the growth curve of the number 

of nuclei and F-score. The growth curve is a graph showing 

time lapsed alterations in the nuclei number of the same 

visual field, plotting the quantified number of cell nuclei 

using existing NIS-Elements image analysis functions. 

F-score is a common index that indicates the inference accu-

racy in machine learning. The closer it is to ₁, the higher the 

accuracy. In addition, it was calculated based on whether or 

not the center of gravity of cell nuclei in ground truth fluo-

rescence images and Convert.ai inferred the existence of 

images within ₁₀ pixels.

　The obtained results confirmed that localization of cell 

nuclei inferred by Convert.ai exhibits almost the same local-

ization as ground truth fluorescent images (Fig. ₂, white 

arrowhead). Furthermore, the growth curve also exhibited 

a curve very close to the results from ground truth, based 

on fluorescent images, and it verified that the inference 

accuracy was maintained, even when cell density changed 

(Fig. ₃). It was demonstrated that F-score value for Convert.

ai is higher than ₀.₉₀, if cell density is up to around ₈₀%. It 

Fig. 2 Comparison of ground truth image of cell nuclei fluores-
cence and inference image from NIS.ai. 

From top left, phase contrast image input into NIS.ai, and input 
image overlayed with ground truth (red), and input image over-
layed with NIS.ai inference (yellow) fluorescence image. Bottom 
shows ground truth and NIS.ai inferred cell nuclei fluorescence 
image. White arrowhead indicates the same cell nucleus. Scale 
bar is ₈₀ µm.

Fig. 3 Comparison of ground truth image of cell nuclei 
fluorescence, and growth curve of number of cell 
nuclei using inferred images from NIS.ai.
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was also shown that Convert.ai can infer with high accuracy, 

if cell density is around ₁₀₀%, usually difficult to recognize 

border between cells.

　From the above verification results, it can be deduced that 

by adopting the Convert.ai function of NIS.ai, cell nuclei can 

be inferred with high accuracy from unstained images with 

training, using realistic numbers of data. Utilizing NIS.ai can 

also save the fluorescence wavelength band used in fluores-

cence microscopy, making it a useful tool for multicolor 

observation in basic research fields. Furthermore, its use is 

also anticipated in clinical research in which valuable sam-

ples, such as those derived from patient disease tissues, are 

subject to analysis.

3.2.	Avoiding	effects	of	stain	reagents	with	digital	stain-
ing	

　Sample staining involves problems other than cost, labor, 

or variations in results between experimenters. Owing to the 

fact that toxicity caused by the addition of staining reagents 

and irradiated light for fluorescent images acquisition affects 

cellular dynamics, it is essential that conditions for reagent 

use and optical configuration of microscope are sufficiently 

examined. In addition, in the field of regenerative medicine 

where cells and tissues are returned to a living body, a prob-

lem exists, as the total sample examination with staining 

cannot be performed. It is possible to circumvent these chal-

lenges by adopting fluorescent digital staining with NIS.ai. In 

this section, we introduce verification results using Hoechst. 

Hoechst is a widely used staining reagent for cell nuclei 

detection, and staining with it is known to produce toxic and 

phototoxic substances [₂].

　We used HeLa cells for verification samples, and per-

formed image acquisition with the same device configuration 

and environment for the verification as described in Section 

₃.₁. We prepared two experimental groups to verify the 

effects of reagents. One was a sample of cell nuclei stained 

with Hoechst prior to image acquisition (＂Stained with 

Hoechst＂ group), and the other was an unstained sample 

that applied the NIS.ai trained model (＂Unstained (NIS.ai)＂ 
group). We acquired time lapse images of the two samples, 

and adopted them for quantitative analysis. Evaluate the 

inference accuracy of the unstained NIS.ai group, Hoechst 

staining was performed immediately before the last image 

acquisition, and ground truth images were acquired. For 

NIS.ai training data, we separately acquired images of sam-

ples with cell density conditions numbered from ₂₀% to 

₁₂₀%, after staining with Hoechst. Subsequently, we prepared 

a model that trained these images under the conditions in 

Table ₂ (Section ₃.₂ items) using Convert.ai, and output 

fluorescent images of cell nuclei from the input phase con-

trast images. Cell nuclei were detected and quantified for the 

Hoechst and unstained NIS.ai groups, respectively, and 

growth curves were prepared.

　Based on the obtained results, we found that cells in the 

stained with Hoechst and unstained NIS.ai groups of compa-

rable density at the start of time lapse were fewer in the 

stained with Hoechst group than in the unstained NIS.ai 

group after ₆₀ h, owing to reagents and phototoxicity (Fig. 

₄). Growth curves also verified that cell growth was sup-

pressed in the stained with Hoechst group (Fig. ₅). This 

indicated that NIS.ai could achieve sufficiently higher accu-

racy than ground truth images at the final point of the time 

lapse (Fig. ₅, red dot).

　These results indicate that correct cell behavior could be 

observed by fluorescent digital staining using NIS.ai. It is 

Fig. 4 Image comparison of cells stained with Hoechst prior 
to starting image acquisition (left) and unstained 
cells (right)

Left and right columns illustrate the cell nuclei regions stained 
with Hoechst (blue) and inferred by NIS.ai (yellow), respec-
tively, with their respective phase contrast images superimposed 
over them. Same field of view images at ₀ h and ₆₀ h are 
arranged vertically. Scale bar is ₁₀₀ µm.

Table 3　Accuracy of cell nuclei inference by NIS.ai

Cell 
density

(%)

Number of cell nuclei

F-scoreGround 
truth

NIS.ai
True 

Positive
False 

Negative
False 

Positive

₃₀ ₂₄ ₂₂ ₂₂ ₂₂ ₀ ₀.₉₆

₅₀ ₆₅ ₆₃ ₆₂ ₃ ₁ ₀.₉₇

₈₀ ₇₃ ₆₉ ₆₇ ₆ ₂ ₀.₉₄

₁₀₀ ₁₀₁ ₉₉ ₈₉ ₁₂ ₁₀ ₀.₈₉
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assumed that ascertaining the behavior of biological sample 

precisely, without incurring the effects of staining reagents 

and phototoxicity, will become increasingly important in the 

fields of biology, medical science, and drug discovery.

3.3.	Automated	workflow	of	acquiring	microscope	images
　In studies using conventional microscope images, research-

ers present only representative microscope images of research 

subjects, which are often discussed in terms of qualitative 

results. However, in recent years, technical progress has 

made it possible to acquire and analyze a large number of 

images, and it has become necessary to quantitatively evalu-

ate microscope images. Hence, manual image acquisition 

using a microscope is becoming a serious challenge in case 

of observing large samples, such as histological sections [₃], 

as well as large-scale screening in drug discovery research 

[₄]. For example, it is known that the specific structure of 

cells present in the glomerulus is lost in the kidney disease 

nephrotic syndrome [₅]. To detect such differences in char-

acteristics, a microscope user needs to use a high-magnifica-

tion objective lens and acquire images after visually confirm-

ing the position of specific structures successively, which 

places a huge burden on image acquisition and analysis 

tasks. By incorporating region segmentation by NIS.ai into 

the image acquisition steps with NIS-Elements, it is possible 

to narrow down image acquisition regions to specific struc-

tures, and thus reduce the burden required of users when 

conducting image acquisition and analysis. In this section, 

we present an example of automatically detecting and 

acquiring the glomerulus images from a kidney section 

sample.

　For verification, we adopted a sample in which a mouse-

derived kidney section was treated with Elastica-Masson 

stain, which tags connective tissues such as elastic and col-

lagen fibers. A Ti₂-E inverted microscope equipped with an 

A₁R confocal microscope system was used for image acqui-

sition. For image acquisition, we used a ₂₀x objective lens 

(CFI Plan Apo Lambda ₂₀X ₀.₇₅NA, Nikon, Japan) and 

CMOS camera (ORCA-Fusion, Hamamatsu Photonics, 

Japan) to detect the position of the glomerulus. For detailed 

structural observations, we used a ₁₀₀x objective (CFI SR 

HP Apo TIRF ₁₀₀XC Oil. ₁.₄₉NA, Nikon, Japan) and confo-

cal microscope system. We prepared training data, showing 

a region of the glomerulus in ₇₈ images cut out from full 

images of two kidney sections obtained by joining multiple 

images taken with a ₂₀x objective lens. In addition, we con-

structed a model to output the glomerulus region, according 

Fig. 5 Comparison of growth curves of number of cell nuclei 
using cells stained with Hoechst prior to starting 
image acquisition (blue) and inferred images by NIS.
ai of unstained cells (yellow)

Shows the mean ∓ SD (n = ₃) at each point in time. Unstained 
cells were stained with Hoechst at the final point, and were con-
sidered ground truth (red dot).

Fig. 6 Overall image of automated workflow from kidney glomerulus detection to high magnification 
image acquisition.

Table 4 Number of glomerulus detected by NIS.ai and infer-
ence accuracy

Ground Truth NIS.ai False Negative False Positive

₉₇ ₁₀₃ ₁ (₁.₀%) ₇ (₇.₂%)
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to the bright field image input from the Segment.ai function 

(Table ₂, Section ₃.₃ items).

　Fig. ₆ illustrates a workflow for automating the steps from 

bright field image acquisition to glomerulus fluorescent 

image acquisition: ₁) construction of kidney total image via 

bright field image acquisition and stiching, ₂) inference of 

the glomerular region (Segment.ai), ₃) calculation of glom-

erulus center-of-gravity coordinates, and ₄) acquisition of 

glomerulus fluorescent images using a confocal microscope 

system.

　Based on the obtained results, there were a few false 

positives of the glomerulus region with NIS.ai processing 

alone; however, only the glomerulus regions were accurately 

detected by incorporating filter processing, based on area 

and circularity in GA₃ (Fig. ₃, red frame). Furthermore, 

compared to the manual glomerulus detection results, false 

negatives or positives in NIS.ai processing remained at ₁% or 

₇.₂% for each.

　From the above, it was demonstrated that regions that are 

difficult to detect via existing image processing can be accu-

rately detected by NIS.ai. In particular, the lack of false 

negatives is crucial because in the case of false positives, 

captured images can be selected later; however, false nega-

tive regions need to be re-acquired images. In particular, 

missing regions that should be detected in clinical testing 

(for example, detection of cancerous areas) can be fatal. 

Furthermore, if NIS-Elements is used in combination with 

NIS.ai to set a sample in a microscope and commence image 

acquisition, a large number of images can be acquired by the 

experimenter (user) without being constrained in front of the 

microscope; hence, drastic labor saving scans can be 

expected. It is expected that in the future, the acquisition 

and analysis of large amounts of data for the purpose of 

quantification will increase in the fields of biology, medicine, 

and drug discovery. Therefore, the usefulness of automatic 

image acquisition and image processing workflows utilizing 

NIS.ai will increase.

4  Conclusion

　NIS.ai is capable of high-precision digital staining and 

segmentation, and is effective in applied studies, such as in 

basic and clinical researches. Although not addressed in this 

paper, NIS.ai also provides functions for eliminating noise in 

microscope images and out-of-focus fluorescence leakage. 

Owing to the combination of these functions and future func-

tional extensions, we further aim to contribute to improving 

user research efficiency and the discovery of novel findings 

by providing digital image processing and quantification 

results that cannot be realized by microscopes alone.

　We are grateful to the assistant professor Matsui of the 

Department of Nephrology, Graduate School of Medicine, 

Faculty of Medicine, Osaka University, for providing us with 

mouse kidney-section samples.
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