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顕微鏡の光学分解能は，「光の回折に起因した限界がある」とよく表現される．アッベにより，この回折限界という特
性が示され，明視野顕微鏡の結像理論の基礎となった．アッベの結像理論が定式化された当時は，照明された試料から
の透過光を用いて像を形成する技術しかなかったが，現在は蛍光を含む様々な光学現象が顕微鏡に使われている．蛍光
には回折という概念が存在しないため，当初の顕微鏡には機能していた回折限界の原理は，蛍光顕微鏡には適用できな
い．実際，蛍光共焦点顕微鏡は回折限界を超えた光学分解能を示す．にもかかわらず，初期の回折限界が未だすべての
顕微鏡の評価基準となっていることは驚きに値する．様々な光学現象を用いた顕微鏡の解像限界を比較するために，統
一結像理論を構築することは有益である．我々は，量子光学的結像理論を定式化し，そこから光学現象ごとに解像限界
が定義されることを導出した．この理論は，アッベの理論を最低次の光学現象を用いるケースとして含み，さらにすべ
ての高次の光学現象を一つの統一式によって表現している．我々は，すべての光学現象をファインマンダイアグラムで
描き，ダイアグラムから解像限界を計算する手法を導いた．

In this work, we study the influence of optical processes on the resolution limit of laser microscopes. We 
formulate rules of resolution limit calculation for all types of laser microscopes that employ a variety of 
optical processes occurring in a sample. By replacing the field with creation/annihilation operators, we 
develop a theoretical framework to unify image-forming formulas that cover all interactions between 
molecules in the sample and the light excitation including the vacuum field. To determine some simple 
rules for the evaluation of optical resolution, our theoretical framework provides a diagram method that 
describes linear, nonlinear, coherent, and incoherent optical processes. According to our formulas, the 
type of optical process decisively influences the resolution limit if no a priori information on the sample 
exists.

結像理論，解像限界，顕微鏡，光と物質の相互作用，ファインマンダイアグラム
image-forming theory, resolution limit, microscopy, double-sided Feynman diagram, optical process

　　　　　 　　　　　　　　　　　　　　　　　　　　　　　　　　　　　　　　　　　　　　　　　　　　　　　　　　　　

1  Introduction

　In ₁₈₇₃, Ernst Abbe established the modern theory of 

image formation in optical microscopy and derived the well-

known formula for the optical resolution, d = λ/₂NA, which 

corresponds to a frequency cutoff (resolution limit) of 

₂NA/λ, where λ is the wavelength of light and NA is the 

numerical aperture of microscope objective₁). In fact, classi-

cal microscopies, such as bright field microscopy₂), phase 

contrast microscopy₃)₄), differential interference micros-

copy₅), and dark field microscopy₆) essentially follow Abbe＇s 

theorem. Relatively new microscopy modalities, such as 

relief contrast microscopy₇), digital holographic microscopy₈), 
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and optical coherence tomography₉) also obey Abbe＇s rule.

　Recently, laser microscopy systems based on a variety of 

optical processes have been developed₁₀)～₁₄). Although 

Abbe＇s definition of resolution limit is still used as the stan-

dard, it is relatively unknown that the ₂NA/λ-limit can be 

applied only to microscopies based on electric susceptibility 

χ(₁)-derived optical processes, such as linear absorption (LA), 

transmission, and reflection. Furthermore, considering the 

three dimensional (₃-D) optical resolution in transmission 

microscopy, it is known that the missing cone exists in the 

spatial-frequency domain₁₅), as long as the χ(₁)-derived optical 

processes are used. When using higher order nonlinear 

susceptibility χ(i)-derived optical processes (i ≧ ₂), the reso-
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lution limit may surpass ₂NA/λ and the missing cone can be 

overcome₁₆). This implies that the higher order optical pro-

cesses, even fluorescence, which is a χ(₃)-derived optical 

process, cannot be dealt with by Abbe＇s formula. Indeed, the 

frequency cutoff in fluorescence confocal microscopy is 

₄NA/λ₁₅).

　In this study, we formulated the rules for the resolution 

limit calculation of all laser microscopes that employ arbi-

trary optical processes. In our theory, the resolution limit 

can be calculated by using the double-sided Feynman dia-

grams describing the time evolution of the density matrix. In 

nonlinear optics, the Feynman diagram method was origi-

nally developed for the classification of optical processes and 

the calculation of χ(i) ₁₇). We extended the applicability of the 

diagram method to the calculation of the resolution limit. 

Our theory covers the Abbe＇s formula as a special case of 

the lowest order χ(₁) optical process. Linear, nonlinear, coher-

ent, and incoherent optical processes can all be described by 

the diagram that includes some arrows₁₈). We show that 

each arrow corresponds to the ₃-D pupil function, following 

the rule we derived. The transfer function, which we will 

define as ＂₃-D aperture＂, can be calculated by connecting all 

₃-D pupil functions in the diagram with convolutions. 

According to our theory, without a priori information on the 

sample, the type of optical process involved determines the 

resolution limit.

2  Optical process: Feynman diagram 
description

　Many types of optical processes can be employed for opti-

cal microscopy, as shown in Fig. ₁(a). All optical processes, 

including coherent and incoherent ones, can be described by 

double-sided Feynman diagrams₁₇)₁₈). As an example, Fig. 

₁(b) shows the diagrams describing linear fluorescence 

(FL). In general, optical processes are expressed by simulta-

neous plural diagrams. For example, in FL, three diagrams 

exist that contribute to the optical process₁₈). In an incoher-

ent process such as FL, both the vacuum field and the laser 

beam are involved. Because solid arrows are generally used 

to represent the excitation field (real photons) in a diagram, 

we use a dotted arrow to represent the vacuum field. A left-

pointing wavy arrow emerging from the ket side (left side) 

corresponds to the signal field.

　In this section, we analyze the fundamental mathematics 

underlying the physical phenomena by using the quantum-

optical notation to deal with all optical processes, including 

incoherent processes. Before dealing with microscopy, we 

analyze the simple case where the creation and annihilation 

of the excitation photons occur in free space with the transi-

tion of molecules (including virtual transition), which results 

in the creation of a signal photon from the molecule and its 

annihilation at the detection position (see Fig. ₁(a)). In a 

diagram, left- and right-pointing arrows correspond to cre-

ation operators â+(x) and annihilation operators â(x), respec-

tively, where x = (x, y, z). We establish the drawing rule of the 

wavy arrow for the signal field, in which the arrow for the 

signal invariably emerges from the ket side to avoid the 

redundant addition of diagrams. The wavy arrow corre-

sponds to âsig
+ (x) (see Appendix). We define the interaction 

operator Êint(x) as the product of all operators in the diagram 

of interest and the excitation operator Êex(x), i.e., Êint (x) = 

Êex(x) âsig
+ (x). The excitation operator for the i-th order opti-

cal process is composed of i creation/annihilation operators.

　Some typical diagrams are shown in Fig. ₂, where the 

optical processes are categorized in terms of the order i. 

Although some optical processes are depicted by simultane-

ous plural diagrams, one of them is described as a represen-

tative diagram for each optical process. Note that the dia-

grams representing identical optical processes indicate the 

same optical resolution. The inner dotted line indicates the 

longitudinal relaxation, which does not influence the optical 

resolution. In incoherent optical processes, the vacuum field 

is involved as a local oscillator and one of the excitation 

fields, while in coherent optical processes only the laser 

beams are responsible for the excitation. In coherent optical 

Fig. 1 (a) Schematic of light-matter interaction. (b) Exam-
ples of Feynman diagrams (three diagrams for FL) Fig. 2　Typical diagrams for some optical processes
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processes, the presence of the local oscillator depends on 

the type of optical process.

3  Notation system

　First, we consider the phenomenon in free space. Fig. ₁(a) 

represents a laser beam incident on a molecular ensemble 

with nonlinear susceptibility χ(i), where the light-matter inter-

action occurs. Then, the molecular ensemble radiates the 

signal, which propagates to the detector position xd, where it 

is annihilated. We assume the laser beam to be in coherent 

state α . We also incorporate the vacuum state around the 

sample 0  into the formulation (see Appendix). Under the 

excitation condition α 0 , the expectation value of the sig-

nal created at x and detected at xd can be expressed as 0 α
χ(i)Êint(x)â(xd) α 0 . For example, in LA, by using the equa-

tion Êint(x) = âα(x)â₀+(x) with âα(x) acting on α  and â₀+(x) 

acting on 0 , the normalizations α α = ₁ and 0 0 = ₁, and 

the ordering rule of operators defined in Appendix (symbol 

⋮ ⋮), the expectation value mentioned above becomes
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where G(xd–x) denotes the Green＇s function for the signal 

photon propagating from x to xd and α(x) is the complex 

function obtained from the equation âa(x) α = α(x) α . In 

Eq. (₁), we used suffixes α for the laser and ₀ for the vac-

uum to clarify the state that the operator acts on. In free 

space without lenses, although â₀(x) still corresponds to 

âsig(x), â₀(xd) is not equal to âcol(xd):

　　 ˆ ( ) ˆ ( )a a0 sig
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Considering the interaction between the signal field 

described by Eq. (₁), which is generated from the vacuum 

field, and the excitation laser beam itself, which acts as a 

local oscillator, the expectation value of the intensity 

observed by the detector at xd is given by
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where the fourth term was neglected and the Gouy phase 

shift – i added in the vicinity of the focus of the local oscilla-

tor was considered.

4  Microscopy model description

　We now define the imaging system (laser microscopy) in 

our model. The laser microscopy is composed of an excita-

tion system that focuses the laser beam onto a sample and a 

signal-collection system that gathers the signal generated 

from the sample. A schematic of laser microscopy with the 

coordinate system is shown in Fig. ₃. In the following, we 

assume a ₃-D sample-stage scanning, rather than laser scan-

ning, which, however, does not influence the optical resolu-

tion. In laser microscopy, one or two excitation beams are 

usually employed to generate the signal. The electric field of 

the signal is emitted from the molecule excited by the elec-

tric fields of the excitation beams, and the signal field propa-

gates through the signal-collection system. The signals are 

acquired point by point with a photodetector to reconstruct 

the ₃-D image.

Fig. 3 Schematic of laser microscopy with coordinate sys-
tems

　For simplicity, the first Born approximation is applied to 

understand the true nature of the optical resolution. In this 

approximation, multiple scattering and depletion of the beam 

are neglected, which usually holds true for nearly transpar-

ent samples, such as biological specimens. If multiple scat-

tering and depletion are intense, the image acquired will be 

deformed to some extent. We assume that both the excita-

tion and signal-collection systems are ₁-X magnification 

systems, which does not change the essence of the image-

forming properties. In our model, the scalar diffraction the-

ory is employed. The linear or nonlinear susceptibility distri-

bution χ(i)(x, y, z) in the sample acts as an object in the 

imaging system. The excitation electric field induces the 

polarization, which emits the signal electric field.

5  Quantum image-forming theory

　The interaction operator Êint(x) is the product of all opera-

tors in the diagram of interest corresponding to the excita-
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tion fields (laser, vacuum, etc.) and the signal field. In 

Appendix, the creation â+(x) and annihilation â(x) operators 

for the excitation and signal fields in real space, respectively, 

are found from the inverse Fourier transform of the product 

of the ₃-D pupil function, P( f), and the operators in wave-

number space, â+( f) or â( f). When the sample-stage dis-

placement x＇ = (x＇, y＇, z＇) is zero, the operator for the polariza-

tion distribution in the sample formed by the excitation 

objective is expressed by χ(i) Êex(x), where we presume that 

the electric permittivity ε₀ is unity: ε₀ = ₁. As mentioned above, 

Êex(x) is the operator composed of the product of the opera-

tors in the diagram of interest except for âsig
+ (x). The expec-

tation value of the amplitude of the signal generated at x in 

the sample and detected at xd is represented by
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where all operators appearing in the diagram and âcol(xd) are 

defined in Appendix; the excitation state α ex is also defined 

in Appendix. The signal emitted from a single point x in the 

sample forms the electric field distribution, i.e., the ampli-

tude spread function (ASF), at the detection position xd:

　　 ASF a acol d col d sig( ) ( ) ( )x x x x� � �0 0ˆ ˆ .  (₆)

Integrating Eq. (₅) over the object space, the total amplitude 

of the signal at xd becomes

　　̂
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　In addition to the signal, we need to consider the local 

oscillator forming the electric-field distribution in the detect-

ing space. For coherent optical processes, one of the excita-

tion laser beams becomes the local oscillator that forms the 

electric field distribution through the excitation and signal-

collection systems. For incoherent optical processes, the 

vacuum field around the sample acts as a local oscillator 

reaching the detecting space through the signal-collection 

system. Considering the interaction between the signal field 

and the local oscillator, the intensity observed at the detect-

ing point xd is given by
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where the operator for the local oscillator âlo(xd) is intro-

duced and the Gouy phase shift of -i for the local oscillator 

is considered. The operator âlo(xd) becomes âlo(l)(xd) acting 

on α ex or âlo(v)(xd) acting on 0  depending on the optical 

process. Note that, while some of the coherent optical pro-

cesses are not involved in the local oscillator, which is the 

vacuum field, in this case, the contribution of the local oscilla-

tor inevitably vanishes because of the formulas âlo(v)(xd) 0  = 

₀ and 0 âlo(v)
+ (xd) = ₀.

　Taking into account the sample-stage displacement x＇, we 

rewrite Eq. (₈) as
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To discuss the resolution limit, we consider confocal micros-

copy, which has the largest frequency cutoff derived from a 

specific optical process. The image intensity acquired by 

confocal microscopes can be expressed as
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where 0 means xd = (₀, ₀, ₀), indicating the detection position.

6  Image-forming formulas for each optical 
process

　We give some examples of the image-forming formulas for 

confocal microscopy with a variety of optical processes. We 

start with Eq. (₁₀) for all optical processes, including linear, 

nonlinear, coherent, and incoherent ones.

(1) Coherent optical process
　In coherent optical processes, the presence of local oscilla-

tors depends on the optical process. For example, in LA, 

stimulated Raman gain (SRG), stimulated Raman loss (SRL), 

and stimulated emission (SE), the local oscillator and signal 

interfere at the detecting position. By contrast, in sum fre-

quency generation (SFG), difference frequency generation 

(DFG), and third-order harmonic generation (THG), the sig-

nal does not interfere with the excitation laser beam because 

the latter can be blocked with a filter by using the wavelength 

difference. In coherent anti-Stokes Raman scattering (CARS), 

two signals, namely the CARS and four wave mixing (often 

referred to as non-resonant back ground), interfere, causing 

the non-resonant background to act as a local oscillator.

　For coherent optical processes with local oscillators, Eq. 

(₁₀) becomes
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where the equations 0 âcol(0) âsig
+ (x) 0 = ASFcol (–x)≡

hcol(–x), âlo(₁)(0) α ex = αlo(₁) hlo(₁) (0) α ex, ex α α ex = ₁, and 

0 0  = ₁ were considered and the fourth term was neglected; 

the scalar function Eex(x) = ex α⋮Êex(x)⋮α ex indicates the 

product of i ASFs formed by the excitation beams. The ASF 

of the collection system ASFcol (x)≡hcol (x) includes informa-

tion on the signal wavelength and the NA of the signal-col-

lection system. Note that ASFlo(l) (0)≡hlo(l) (0) includes the 

contributions of the NA of both the excitation and collection 

systems and the excitation wavelength. Because the first 

term in Eq. (₁₁) is a constant, the second term determines 

the resolution limit. We refer to the function Eex(x) hcol(–x)

≡ht(–x) as the ASF of the total microscope system and its 

Fourier transform corresponds to the ₃-D aperture. In this 

case, the ₃-D aperture is often referred to as the weak-object 

transfer function (WOTF)₁₉). The complex constants αex₁, αex₂, 

etc. correspond to the laser power amplitude, and hex₁ (x), 

hex₂ (x), etc. include the information on the excitation wave-

length and the NA of the excitation system.

　For coherent optical processes without local oscillators, 

Eq. (₁₀) becomes

　　I E h di
C ex col( ) ( ) ( ) ( ) ,( )x' x x' x x x= − −∫∫∫ χ 3

2  (₁₂)

where the first term 0 âlo(v)(0) âlo(v)
+ (x) 0 , which cannot be 

observed, was neglected; the second and third terms vanish 

because the numbers of the creation and annihilation opera-

tors acting on 0  are different, and only the fourth term 

remains. In Eq. (₁₂), we use the equation âcol (0) âcol
+ (0) = 

âcol
+ (0) âcol (0) + C (const.) originating from the commutation 

relation [âcol (0), âcol
+ (0)] = ∫|Pcol ( fd)|₂ d₃ fd (see Appendix), 

which results in the part C 0 âsig(x₂) âsig
+ (x₁) 0  vanishing because 

the Green＇s function 0 âsig(x₂) âsig
+ (x₁) 0  propagating from x₁ 

to x₂ is not related to the physical phenomenon. We also use the 

relation 0 0  = ₁. As mentioned above, the ASF of the total 

system, ASFT, is represented by ht(–x)≡Eex(x) hcol(–x). Note 

that grating objects with grating pitch finer than the ASFT 

cannot be resolved by microscopes using coherent optical 

processes without local oscillators. Consequently, the ASFT 

is well-defined indicator of the resolution limit.

(2) Incoherent optical process
　In incoherent optical processes such as FL, two-photon 

excited fluorescence (TPEF), and spontaneous Raman scat-

tering (Ra), the annihilation operator for the vacuum field 

emerging from the bra side in the diagram âvac(x) (see 

Appendix) is essential for Êex(x). In incoherent processes, the 

vacuum field acts as the local oscillator. We define the 

operator Êex(l)(x) as the product of all operators in the dia-

gram excluding âvac(x), i.e., Êex(x) = Êex(l)(x) âvac(x). For an 

incoherent optical process, Eq. (₁₀) reduces to the well-

known image-forming formula:
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In Eq. (₁₃), the scalar function Eex(x) = ex α ⋮Êex(l)(x)⋮ α ex 

is introduced; the relation Eex(l)(x) = |ASFex(l)(x)|₂ is used 

because Êex(l)(x) is inevitably composed of the same number 

of âex(x) and âex
+ (x) in incoherent optical processes; and the 

commutation relation [âcol(0), âlo(v)
+ (0)] = ∫V*( fd)|Pcol ( fd)|₂ d₃ fd 

= ₀ (see Appendix) and the formula 0 0  = ₁ are utilized. 

Note that Im{χ(i)(x)} is a negative function. Because the vac-

uum field is never observed, the first term can be omitted. 

The point spread function of the total system involving an 

incoherent optical process is |ASFex(l)(x)|₂|hcol(–x)|₂≡ht(–x).

7  Redefinition of the resolution limit

　In our theory, all optical processes, including linear, nonlin-

ear, coherent, and incoherent ones, can be dealt with consid-

ering the same framework. For coherent processes, only the 

real field is applied as the excitation field, while for incoherent 

processes, one of the excitation fields is the vacuum field.

　To evaluate the resolution limit of all microscopy modali-

ties, we define the ₃-D aperture A(f) as the Fourier trans-

form of the ASF of the total system ASFT represented by 

ht(–x). The physical significance of the ₃-D aperture is the 

rate of Fourier components in the object, acquired through 

the microscope system. In microscopy with a local oscillator, 

the ₃-D aperture is derived from the Fourier transform of 

the second term (one of the cross terms) of Eq. (₁₀), as 

χ( )i ( f )A( f ); in this case, the Fourier transform of the third 

term is merely the complex conjugate of the Fourier trans-

form of the second term, which means that the third term 

does not contain additional information. In microscopy with-

out local oscillators, only the fourth term remains, and its 

Fourier transform is proportional to the autocorrelation of 
χ( )i( f)A( f). Furthermore, because no local oscillator is pres-

ent, the optical transfer function (OTF) cannot be defined, 

resulting in some image deformation. Because the spatial 

frequency outside the ₃-D aperture can never be acquired, 

the ₃-D aperture itself is the most appropriate criteria to 

obtain the resolution limit.

　While for incoherent processes the OTF can always be 

defined, for coherent processes, it can be defined only if the 

local oscillator exists. However, the ₃-D aperture can be 
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defined even in the absence of a local oscillator. For micros-

copy with the local oscillator, two types of the OTFs are 

defined, i.e., ones for the real and imaginary parts of χ(i)(x). 

By taking into account the second and third terms in Eq. 

(₁₀), the OTF for the real part of χ(i)(x) becomes OTFr ( f) = 

iA( f) -iA*(– f ). Similarly, the OTF for the imaginary part 

can be expressed as OTFi(f) = –A(f)–A*(– f)₁₉). Although  

χ(i)(x) is generally a complex function, in most cases χ(i)(x) is 

either the real function or the pure imaginary function. In this 

case, OTFr ( f) and OTFi( f) become well-defined and useful 

concepts. However, even when the OTF is not defined, the 

₃-D aperture is still the best indicator for the resolution limit, 

because the information outside the ₃-D aperture cannot be 

acquired.

8  Rules of diagram method

　As described above, in all optical processes, including 

incoherent and coherent, regardless of the presence or 

absence of the local oscillator, the ₃-D aperture can be 

expressed by the Fourier transform of ht(–x). The expres-

sions for the coherent and incoherent optical processes can 

be unified using the diagram method. From the Fourier 

transform, we obtain the rule that the ₃-D aperture of confo-

cal microscopy with a certain optical process can be calcu-

lated by convolving all ₃-D pupil functions that correspond to 

the arrows in the diagram, following the correspondence 

table below₂₀)₂₁). Note that, in the table, we rewrite Pcol(f) δ+*(|f|–fsig) 

as Pcol( f), which has delta-function characteristic in the radial 

direction.

Table 1 Correspondence between pupil functions and the 
arrows in the diagrams

Excitation Excitation Vacuum Signal

arrow

Pupil function Pex (－f ) P*ex ( f ) P*col (－f ) Pcol ( f )

　All optical processes can be described by the diagrams, 

which were originally developed to classify and count the 

right amount of interactions and estimate the amplitude and 

phase of the nonlinear susceptibility in the interaction of 

interest. We discovered one more application of the dia-

grams, i.e., calculating the ₃-D aperture of microscopes that 

employ the optical process described by the diagram, where 

each arrow corresponds to a ₃-D pupil function: the ₃-D 

aperture can be computed by connecting all ₃-D pupil func-

tions in a diagram with convolution. The frequency cutoff of 

the ₃-D aperture defined above determines the resolution 

limit of the microscope. As long as the optical process of 

interest is employed, the resolution limit cannot surpass the 

frequency cutoff determined by the optical process, regard-

less of how well the system is devised. We can prove the 

following theorem: ＂If there is no a priori information on an 

object in far-field microscopy, the resolution limit determined 

by optical process cannot be surpassed, no matter how well 

the microscopy is devised.＂

9  Results and discussion

　As stated above, the maximum possible resolution limit is 

determined by the type of optical process employed. For 

illustration, Fig. ₄ shows the calculation results of the ₃-D 

aperture for CARS, SRL, SRG, and THG microscopy₂₀)₂₁). 

With identical excitation wavelengths, the resolution limits 

of SRL and SRG microscopy are the same, while that of 

CARS microscopy is higher. The ₃-D aperture of THG 

microscopy exhibits peculiar properties, whereby the value 

of the origin in the spatial frequency domain is zero, result-

ing in the disappearance of the uniform part from the image.

　According to our theory, the upper limit of the frequency 

cutoff determined by the optical process cannot be sur-

passed. Although the optical resolution may be different for 

different microscopy modalities, the maximal frequency 

cutoff is the same if the same optical process is employed. 

The modality with the maximal frequency cutoff is confocal 

microscopy. The frequency cutoff of its ₃-D aperture deter-

Fig. 4 Calculated 3-D apertures for (a) CARS, (b) SRG, (c) 
SRL, and (d) THG. n is the average refractive index 
in the sample. The NAs of both excitation and sig-
nal-collection objectives are 0.9 (dry). For CARS, 
SRG, and SRL, the vibrational frequency (1/λex1-1/λex2) 
is assumed to be 2850 cm-1.
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mines the upper limit by the optical process of interest. 

While each optical process possesses its own inherent upper 

limit, the NA and wavelength also influence the resolution. 

Only spatial frequencies within the ₃-D aperture can be 

imaged. Fig. ₅ shows the calculated ₃-D apertures of confo-

cal microscopy in transmission and reflection modes 

employing LA, FL, second-order harmonic generation 

(SHG), and CARS. In reflection mode, although the OTF 

does not exist (no local oscillator), the ₃-D aperture can be 

defined. In Fig. ₅, the NAs of both excitation and signal-col-

lection objectives are assumed to be ₁.₂ (water immersion), 

and λ (₈₀₀ nm) represents the excitation wavelength. In 

CARS, where two excitation beams (pump and Stokes) are 

used, we assume that λ is the pump wavelength (₈₀₀ nm) 

and the vibrational frequency is ₂,₈₅₀ cm-₁, which means 

that the Stokes and CARS wavelengths are ₁,₀₃₆ nm and 

₆₅₁ nm, respectively. For simplicity, in FL, we assume that 

the fluorescence wavelength is the same as the excitation 

wavelength.

　Next, we consider the OTFs of SRL and CARS micros-

copy. In the previous section, we defined the OTFs of the 

real and imaginary parts of χ(₃) as OTFr( f) = iA( f)– iA*(– f ) 

and OTFi ( f) = –A( f)–A*(– f), respectively. This holds true 

for SRL because the local oscillator is the pump beam itself, 

which causes a Gouy phase shift of – i in the vicinity of the 

focus of the excitation beam in the sample. In CARS, how-

ever, the non-resonant background, whose χ(₃) is a positive 

real number, acts as the local oscillator. The constant before 

the local oscillator becomes unity in CARS because the non-

resonant background is generated from the sample with an 

initial phase of zero. Here, the non-resonant background is 

assumed to be spectrally flat and have homogeneous inten-

sity over the sample. In this case, the OTF of CARS micros-

copy changes as follows: OTFr (f) = A(f) + A*(–f) and OTFi (f) 

= iA( f )– iA* (– f ). If A( f ) = A* (– f ), OTFr ( f ) in SRL and 

OTFi ( f) in CARS vanish, but if A( f)≠A* (– f), they remain. 

Consequently, in SRL under the condition A( f )≠A* (– f ), 

the real part of χ(₃), which also contains cross phase modulation 

(XPM, an optical process), appears in the image. Similarly, in 

CARS under the condition A( f)≠A* (– f), the imaginary part 

of χ(₃) is observed.

　We now consider nonconfocal microscopy, which is nor-

mally used to obtain a high signal intensity. Although in 

nonconfocal microscopy the detector is normally placed at 

the plane conjugate to the pupil of the collection objective, 

we consider the microscopy in which the detector is placed 

at the image plane conjugate to the sample plane. Note that, 

in nonconfocal microscopy, the image does not change 

regardless of the detector position. Therefore, to simplify the 

equation, we calculate the intensity value at a certain sample-

stage displacement (x＇, y＇, z＇) by three-dimensionally integrating 

the signal intensity in the detection space. The image intensity 

acquired by nonconfocal microscopy is proportional to ₁₆)₂₀)

I cE E h d( ) ( )( ) ( ) ( )( )x' x x x' x x x x∝ + −   −∫∫∫∫∫∫ lo d CRS ex col dχ 3 3 3
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3

3
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2

d

E d

c E E h

x

x x

x x' x

d

lo d d

lo CRS ex c

≈

+ −  

∫∫∫
∫∫∫∗ ∗

( )

( ) ( )( )χ ool( ) . .,− +x xd c c3

 

(₁₄)

where Elo(xd) is the local oscillator, c is – i for SRL and unity 

for CARS, and [Eex
₃ (x)] represents the excitation field includ-

ing the pump and Stokes beams. In Eq. (₁₄), the fourth 

term was neglected and the relation ∭Elo* (xd) hcol (xd –x)d₃xd 

≈ Elo* hcol(–x) was used, assuming that Elo(xd) ≈ Elo hcol(xd) if 

NAex ≥ NAcol. The first term in Eq. (₁₄) is a constant, which 

vanishes with lock-in detection in SRL, and can be eliminated 

on the computer in CARS. The cross terms (second and 

third terms) form an image.

　We now consider the influence of NA on the OTF in 

CARS and SRL microscopy. By considering the excitation 

fields Ep(x) ES*(x) Ep(x) in CARS and Ep(x) ES*(x) ES (x) in 

SRL, we analyze the key factor ht(–x) = [Eex
₃ (x)]hcol(–x) that 

determines the optical resolution, where Ep (x) and ES (x) are 

the electric field distribution in the sample for the pump and 

Stokes beams, respectively. Note that [Eex
₃ (x)] is formed by 

the excitation system, while hcol (–x) is formed by the signal-

collection system. In other words, the Fourier transforms of 

Ep(x) and ES(x), i.e., Pp( f ) and PS( f ), are the spherical-shell 

shaped pupil functions of the excitation system, determined 

by the wavelength and NA, while hcol(– x) is the Fourier 

transform of the pupil function of the signal-collection system 

Pcol( f ). Moreover, note that the radius of Pcol( f ) of SRL dif-

fers from that of CARS. The ₃-D aperture A( f ), i.e., the 

Fourier transform of ht(–x), is calculated by convolving the 

Fig. 5 Calculated 3-D apertures for (a) LA, (b) FL, (c) SHG, 
and (d) CARS. The upper and lower rows are for 
transmission and reflection types, respectively.
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four pupil functions: Pp(– f) ⊗ PS*( f ) ⊗ PS (– f) ⊗ Pcol( f ) for 

SRL and Pp(– f) ⊗PS*( f) ⊗Pp (– f) ⊗Pcol( f) for CARS. There-

fore, if NAex ≥ NAcol, the ₃-D aperture A( f ) becomes asym-

metric, i.e., A( f )≠A* (– f), resulting in the appearance of 

XPM in SRL microscopy images. On the other hand, if NAex 

= NAcol (or even NAex ≤ NAcol), the XPM disappears from the 

image. Note that, if the three focal points (excitation system 

for the pump beam, excitation system for the Stokes beam, 

and signal-collection system) do not coincide with one 

another in the sample, XPM emerges even in the case of 

NAex = NAcol.

　Fig. ₆ shows the NA dependency of the OTF in CARS and 

SRL microscopy, where we assume that, in SRL microscopy, 

the wavelengths of the pump and Stokes beams are tuned to 

a full-resonant vibrational level, and in CARS microscopy, 

they are slightly detuned to observe Re{χCARS
( )3 }. Under the 

same excitation conditions, CARS microscopy exhibits a 

slightly higher optical resolution than SRL microscopy owing 

to the difference in the signal wavelength. In SRL micros-

copy, if NAex ≥ NAcol, the OTF of the XPM appears, which is 

usually undesired. Because the XPM point spread function, 

calculated by Fourier transforming the OTF, becomes an odd 

function in the z-direction, the XPM image seems a differen-

tial image with respect to z.

10  Conclusion

　We have applied the Feynman diagram technique to calcu-

late the laser microscopy resolution limit. This method 

allows the description of linear, nonlinear, coherent, and 

incoherent interactions. By performing the calculations, 

simple rules for the evaluation of ₃-D apertures were 

derived. The ₃-D aperture can be calculated by connecting 

the ₃-D pupil functions corresponding to each arrow in a 

diagram with convolution. Our theory implies that, without 

a priori information on the sample, the type of optical pro-

cess determines the resolution limit.

11  Appendix

　The plane wave of a laser beam can be assumed to be in a 

coherent state with the frequency f = (fx, fy, fz)

　　 α α
ex ex

=
∈
Π

f fP f( )
,  (A₁)

where α is a complex number and n f is the number state 

for the plane wave with frequency f (wavenumber k = ₂πf ). 

Because the excitation laser beam is focused onto the sam-

ple by the excitation objective, the corresponding excitation 

state is represented by the direct product of all modes 

restricted by the NA and wavelength:

　　
α αα

f f
=

−

=

∞
∑e

n
n

n

n

2

2

0 !
,
 

(A₂)

where Pex represents the ₃-D pupil function for the excitation 

objective. In coherent optical processes, we consider only the 

coherent states for laser beams. If two different laser beams 

(ex₁ and ex₂) are employed for the excitation, the state rep-

resenting the excitation condition becomes α ex₁ α ex₂.

　For incoherent optical processes, we incorporate the vac-

uum state 0  into the formulation as one of the excitation 

lights. For this purpose, we consider the direct product of 

the coherent state and vacuum state α ex 0  as the excitation 

condition. The vacuum state 0  contains all modes 0 f with 

frequencies f :

　　 0 0� �
f f

.  
(A₃)

This vacuum state exists around the sample. Note that the 

contribution of 0 f in α f is negligible because of the normal 

order product for the operator, which will be explained later.

　We introduce the basic idea of the annihilation and cre-

ation operators in real space, â(x) and â+(x), using the ₃-D 

pupil function P( f ):

　　 ˆ( ) ( ) ˆ( ) ,a P a e dix f f ff x� �� 2 3�  (A₄)

　　 ˆ ( ) ( ) ˆ ( ) ,a P a e di+ ∗ + − ⋅= ∫x f f ff x2 3π  (A₅)

where â( f ) and â+( f ) are the annihilation and creation 

operators in the wavenumber domain, respectively. Using 

this underlying concept, we can define the annihilation 

operators in real space for the excitation laser field âex(x), 

the vacuum field around the sample âvac(x), the local oscilla-

tor field derived from the vacuum field âlo(v)(x), the local 

oscillator field due to the excitation laser field âlo(l)(x), the 

Fig. 6 OTF for CARS, SRL, and XPM. n is the average 
refractive index in the sample. The wavelengths of 
the pump and Stokes beams are 800 and 1036 nm, 
respectively. The vibrational frequency is assumed to 
be 2850 cm-1. (a) NAex = 1.2, NAcol = 1.2. (b) NAex = 
1.2, NAcol = 0.55.
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signal field emitted from the sample âsig(x), and the signal 

field collected into the detector âcol(x) as
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with
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where Pex( f ) is the ₃-D pupil function for the excitation sys-

tem expressed by the product of the ₂-D pupil function for 

the excitation system Pex
(₂)(fx, fy) (including laser beam profile) 

and the spherical shell truncated by NA Pex
(₃)(fx, fy, fz), which 

has delta-function characteristics in the radial direction. V( f) 

represents the complex random function whose modulus is 

one, Pcol( f ) is the ₃-D pupil function for the signal-collection 

system, which is the partial sphere with the modulus of one, 

and fsig is the modulus of the wavenumber for the signal 

field. Note that fsig takes into account the refractive index of 

the sample. The information on the aberration is included in 

the pupil functions.

　We now establish the operators ordering. The operators 

âex(x) and âlo(l)(xd) act on α ex, and the operators âvac(x), 

âlo(v)(xd), âsig(x), and âcol(xd) act on 0 . For the operator order-

ing, we introduce the symbol ⋮ ⋮. In the area between the sym-

bols ⋮ ⋮, the order of the operators is rearranged as follows:
● Rule for the operators acting on α ex

Normal ordered product: creation operators are placed to 

the left of the annihilation operators in the product.
● Rule for the operators acting on 0

Anti-normal ordered product: annihilation operators are 

placed to the left of creation operators in the product.

The special ordered product defined above means that the 

vacuum field cannot be observed, except when considering 

the propagator represented as the vacuum expectation value, 

such as 0 âcol(xd) âsig
+ (x) 0 . Note that we ignore the vacuum 

expectation value 0 âlo(v)(xd) âlo(v)
+ (xd) 0 , which cannot be 

observed in practical experiments.

　To unify the framework for coherent and incoherent opti-

cal processes, the classical field is replaced by the operator. 

Then, the operator acts on the bra or ket describing the 

excitation condition. Because the vacuum field inevitably 

exists around the sample, we always utilize both the coher-

ent state for the laser and the vacuum state as the excitation 

condition, such as α ex 0 . For example, using the relation 

âex( f ) α f  = α α f , the calculation is as follows:
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where ASFex(x) is the ASF formed by the excitation laser 

beam onto the sample through the excitation objective. The 

calculation related to the vacuum field is as follows:
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where ASFcol(xd) is the ASF formed by the signal field onto 

the detector through the signal-collection objective. Eq. (A₉) 

represents the propagator for the photon that is created at x 

and annihilated at xd. In Eqs. (A₁₀) and (A₁₁), the left-hand 

side, which appears to be the light propagation from xd to x, 

physically indicates that the light expressed by the complex 

conjugate propagates from x to xd.

　For the convenience of formulas transformation and sim-

plification, we calculate the commutation relation between 

the annihilation and creation operators in real space:
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where the commutation relation in frequency domain 

[â ( f₁), â+ ( f ₂)] = δ( f ₁– f ₂) is used. Likewise, we obtain
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where the random phase nature of V*( f d) is used.
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