超小型ジェットエンジンの最適リブレット 計算とそのレーザー加工,およびエンジン 性能での効果検証[†]

稲崎慎也, Peter A. Leitl, Andreas Flanschger, Stefan Schreck, Richard Benauer

Numerical and Experimental Investigation of Laser Processed Riblets on Ultra-small Jet Engines and the Impact on the Performance

Shinya INASAKI, Peter A. LEITL, Andreas FLANSCHGER, Stefan SCHRECK and Richard BENAUER

リブレットとは、乱流境界層における粘性抵抗を低減する、サメ肌状の流線形の溝面である. 超小型ジェットエンジン のコンプレッサー、ディフューザー、タービンブレードにリブレットを形成し、エンジン性能の向上を実験的に確認し た.まず、エンジンの3次元モデルを用いた数値流体力学(CFD)により、エンジン性能向上に最適なリブレットデザ インを算出し、その性能向上量はエンジン推力で1.81%向上を予測した.算出したリブレットデザインを、直接のレー ザー加工によってデザインを忠実に再現するようにエンジン部品に形成した.この部品をエンジンに組み込み、エンジン 性能を実測し、レーザー加工されたリブレットはエンジン推力を1.44%向上させるとの結果が得られた.本研究は、高 温・高速回転する部品にレーザー加工リブレットを適用し、ターボ機械の性能を向上させた世界初の実験的実証となる.

Riblets are streamwise grooved surfaces which reduce the viscous drag in a turbulent boundary layer, similar to shark skin. We experimentally confirmed improved engine performance by forming riblets on the compressor, diffuser, and turbine blades of an ultra-small jet engine. The optimum riblet design was calculated by computational fluid dynamics (CFD) using a 3D model of the engine, and the improvement was predicted to be 1.81% in engine thrust. The calculated riblet design was formed on the actual parts by laser ablation. It was experimentally confirmed that the laser processed riblets improved engine thrust by 1.44%. This work is the world's first experimental demonstration of improved turbomachinery performance through the application of laser processed riblets on parts exposed to high temperatures and rotating at high speed.

Key words 超小型ジェットエンジン, コンプレッサー, ディフューザー, タービン, 推力, 効率, リブレット, レーザー加工, 粘性抵抗低減, 流体解析 ultra-small jet engine, compressors, diffuser, turbine, thrust, efficiency, riblet, laser processing, drag reduction, CFD

1 はじめに

ガスタービンやジェットエンジンなどターボ機器の燃料 消費削減や温室効果ガス排出抑制といった経済性や環境性 に対する要求が高まっており、ターボ機器の効率改善は社 会的にも重要になっている.効率改善手段として、我々は 流体抵抗の低減に着目した.流体抵抗は、圧力抵抗(慣性 抵抗)と摩擦抵抗(粘性抵抗)に大別される.壁近傍層で は、縦渦と呼ばれる乱流要素渦があり、特に高レイノルズ 数の乱流領域においては、渦が壁に向かう強い衝撃流を作 り、層流に比べて大きな壁面乱流摩擦抵抗が発生する[2]. 摩擦抵抗は流体機器の効率低下の一因であり,これを低減 することは流体機器の効率を向上させる重要な課題のひと つである.

一方, サメの中でも早く泳ぐ種類においては, 鱗1つ1 つの表面に 35~100 μm 程度の微小な縦溝があることが知 られている [3], [4]. このサメの鱗の溝はリブレット (riblet) と呼ばれ, 平滑面に対して最大8~10%程度の乱 流摩擦抵抗低減を引き起こすことが実験的にも明らかにさ れている [5].

実用に向けた研究としては、とりわけ表面積が大きく高 レイノルズ数領域で乱流摩擦抵抗の寄与が大きな航空機や

*本稿は、著者らの引用文献[1]に対し、タービン翼のエンジン稼働時温度や稼働時間の結果、および金属疲労についての考察を加えたものである.

風力タービン翼の分野でリブレットの研究が進んでおり [6], [7], 産業用コンプレッサーやジェットエンジンなど ターボ機械にも有効と考えられている [8], [9]. ただ, こ れらの機器の最適リブレットは, ピッチが数 µm ~100 µm の微小寸法となることから, 機械加工による壁面へ直接の リブレット付与は実現困難であり, 従来は金型による樹脂 フィルム (リブレットフィルム)が用いられた [10]. しか し, 対象物の形状や流線が複雑であったり使用環境が高温 である場合, また高速で回転する動体である場合にはフィ ルムの適用が難しく, 商用ガスタービンやジェットエンジ ンなどにおいてはリブレットの実用化は困難であった.

そこで我々はレーザーアブレーション加工により所定の 形状のリブレットを形成する技術を開発した.レーザーア ブレーション (laser ablation) とは、ナノ秒、ピコ秒、 フェムト秒のパルス幅を持つ極短パルスレーザーによって 非熱的に材料表面の物質を除去する技術である [11], [12]. この技術と、リブレットの最適寸法を導出し流体へ の効果を予測する技術 [13] とを組み合わせることで、従 来リブレットの実現が難しかった複雑な形状で高温環境、 高速で回転するタービン翼に対して直接リブレットの形成 を行うことが可能である.我々は実際に、超小型ジェット エンジンのタービン翼 (動翼) に加えて、同様に複雑な形 状で高速動体のコンプレッサー (動翼)、ディフューザー (静翼) の3部品にリブレットを施し、その効果をエンジン 性能の改善、効率の改善として示してきた [1].

一方,材料表面にリブレットのような切欠きを形成する と,材料の強度特性の低下が懸念される.これに対し我々 は,圧縮機の部材に直接リブレット加工を施した試験片を 準備し,引張試験,クリープ試験を実施し,部材への直接 のリブレット加工が,金属の強度特性に影響が無いことを 示してきた[14].本稿は,著者らの評価結果[1]に対し, タービン翼のエンジン稼働時温度や稼働時間の結果,およ び金属疲労についての考察を加えたものである.

2 評価系概要

2.1. 超小型ジェットエンジン JB220

リブレットの効果を検証した超小型ジェットエンジンは, JB220 (Behotec, Dahau, Germany) である Fig. 1 に形状の 概略を示す.エアインテークから吸気し,遠心型動翼のコ ンプレッサー,静翼のディフューザー,燃焼室,静翼の Nozzle guide Vane を経て,動翼のタービン,テールコーン から排気される.動翼部の最大回転数は 12万 rpm で,最 大推力は 220 N である.

燃焼機部の外形直径は約 11.3 cm で, 全長は 31.3 cm で ある. コンプレッサーの羽根車径は約 8 cm で, 回転軸方 向厚みは約 3 cm, 羽根は14枚. ディフューザーの直径は約 11 cm で, 回転軸方向厚みは約 2 cm. タービンの羽根車径 は約7 cm で, 軸方向厚みは約1 cm, 羽根は23枚である. 材質は, コンプレッサー, ディフューザーがアルミ系合金 で, タービンのみインコネルである.

Fig. 1 Ultra-small Jet engine configuration

2.2. エンジン評価ベンチ

エンジン性能評価および,リブレット最適化計算に必要 なデータ取得のため,エンジン評価ベンチをフォックス コーポレーション,日本と共同で作成した.評価ベンチの 概要模式図を Fig. 2 に示す.

本評価ベンチは、エンジン本体、エンジン性能計測部、 エンジン内部温度・圧力計測部、外部環境計測部から構成 されている.エンジン本体と性能計測部および内部温度・ 圧力計測部は室内に設置され、吸入空気は、外部環境空気 をそのまま使用している.外部環境計測部は、この外部環 境の温度および気圧を計測するものである.

エンジン本体は,前節のJB220である.エンジン性能計 測部として推力計,回転計,燃料流量計,風速計を配置し ている.吸気流量管理のため,エンジンのエアインテーク 前に内径 11.4 cm の筒を配置し,この筒を通じてエンジン に吸気するよう接続している.推力計測のため,エンジン

Fig. 2 Ultra-small Jet engine evaluation bench overview

は2本の円径マウンターで固定されている. エンジン内部 温度・圧力計測部は,吸入空気の温度,コンプレッサー後 の温度・圧力,燃焼室内温度,テールコーン部温度を計測 しており,エンジン内部に各センサを配置している.外部 環境計測部は,温度,湿度,気圧を百葉箱内で計測してい る.これらの計測器はすべて1つのデータロガーに接続し, サンプリング周期0.5秒で値を記録している.

3 数值的解析

3.1. 解析の概要

リブレット設計および効果予測は流体解析(CFD)によ り導いた.Fig.3にリブレット設計プロセスの概略を示す. まず,実測評価とコリレーションを取りながら,全ての物 体表面にリブレットの無いベースライン解析を moving mesh (MM)による非定常 LES (Large-Eddy Simulation) で行い,次いで mixing plane model (MPM)による定常 RANS (Reynolds-Averaged Navier-Stokes)と比較して妥当 性を確認した.リブレットが有る解析は、リブレットの微 小な形状自体はモデル化せず,別途ミクロな非定常解析に よって境界層に与える影響を求めた結果を,定常 RANS に おける壁表面特性として与えることでリブレットを再現し た.リブレット有無の比較と効果予測は,定常 RANS の範 囲内で行った.

Fig. 3 Scheme of riblet design process and correlation between simulation and experiment

3.2. 解析条件

解析メッシュは約950万である. リブレット断面形状は Fig. 4 に示すような最大 8 %の摩擦抵抗低減効果を持つ三 角形状のリブレットを仮定し, リブレットの適用箇所はコ ンプレッサー, ディフューザー, タービン翼, およびター ビンのプラットフォームとし, 3 部品ともにシュラウド部 には未適用とした.

Fig. 4 Assumed riblet cross-section in CFD

エンジンの運転条件は,事前評価の取得条件,実測結果 に即しており,回転数 80,624 rpm,密度は圧縮性流体とし て扱い,動粘度は温度依存の Sutherland 則に従うとした. それ以外の主要な解析条件は、エンジン空気流入量 0.21853 kg/s,同全温 299.45 K,同全圧 1018.10 hPa, タービン動翼へのGas 流入量 0.22368 kg/s,同全温 985.4 K,同流入角度34.54°,エンジン出口側の全温 299.45 K, 同全圧 1018.10 hPa とした.

3.3. ベースライン解析

前節の解析条件を用いた非定常 LES が,実測結果と一致 しているかを確認した.ディフューザー後の温度は,実測 382.15 K,シミュレーション 377.86 Kとなっており,良 く一致している.また,タービン後の温度についても,実 測の平均値 912.66 Kと計測バラつき±13.19 Kの範囲にシ ミュレーション値は分布しており,こちらも良く一致して いる.これらのことから,実測結果と非定常 LES は良く一 致していると言える.

次に,非定常 LES と定常 RANS の結果が一致するか確認 した結果を Fig. 5 に示す.エンジンパフォーマンスで最大 約6%の差,空力性能で最大約3%の差が出ているが,全 体としては良く一致している.定常 RANS 結果はリブレッ ト無しのベースラインとして妥当である.

Fig. 5 Baseline simulation results without riblets by unsteady LES (MM) and steady RANS (MPM)

3.4. リブレット最適寸法とリブレットの効果予測

Fig. 6 に CFD によって導出されたリブレット最適寸法の コンターを示す. コンターは赤がリブレットピッチが広く, 青がリブレットピッチが狭い.

コンプレッサーとディフューザーのリブレットピッチは 10~100 µm 程度で,15~30 µm のピッチが半数以上を占め る.ブレード内の分布としては,周速度の早いエッジ付近 のリブレットピッチが狭い傾向がある.

タービンのリブレットピッチは,35~120 µm 程度である. 翼腹側(正圧面,燃焼器側)は40~60 µm のピッチが 半数以上を占めるが,背側(負圧面,テールコーン側)は ブレード根元に広いピッチが多く分布しており,45~ 120 µm 程度でほぼ均一に分布している.

これらのリブレットを適用した際のエンジン性能の改善 は、回転数 80,624 rpm,エンジン吸気量不変の条件におい て、3部品ともリブレットを付与した場合、推力が1.81% 改善、燃料消費量はほぼ変化無しとの予測を得た.

4 リブレットのレーザー加工

4.1. レーザー加工の概要

リブレットの加工にはレーザーアブレーション加工の開 発機を用いた.この模式図をFig.7に示す.このレーザー 加工機は,波長532nm(緑色),パルス幅約15ps,最大 繰返し周波数4MHz,最大出力50Wの短パルスレーザー を持つ.レーザー光は照射ヘッドに導かれ,ガルバノミ ラーによって同期してスキャンされる.レーザー光はfθレ ンズによって所定の位置に集光されるが,湾曲した翼表面 に沿って焦点を追随させることができる.照射ヘッドは3 軸ステージによって所定のXYZ位置に駆動でき,また加工 対象物は2軸の傾斜ステージ上で所定の姿勢を示現できる. レーザー光が集光した対象物の表面はアブレーションによ り除去され,これを連続的にスキャンすることでリブレッ トの溝が形成される.

前節で述べた CFD によるリブレット最適寸法を忠実に 再現するため,解析ノードごとのリブレットのピッチと方 向の情報から流線に沿ったリブレットのパスを生成した. これにより,一様でないリブレットピッチを持つ領域内で, 3次元的に計算された流線に沿った曲線上にリブレットを

形成できる.

4.2. リブレットの加工結果

最終的にコンプレッサー,ディフューザー,タービンの 3部品にリブレットのレーザー加工を施した. CFD 条件と 同様に,3部品とも共通して部品外側のシュラウド部は未 加工である.

コンプレッサーはブレードの負圧面と正圧面の一部とハ ブ面の一部に加工を行った.Fig.8にリブレットの加工済 みのコンプレッサーを示す.見た目の色の濃淡は、リブ レットピッチの変化による物である.ブレード間では共通 のリブレットデザインを適用しているため、結果として、 すべてのブレードで同じ濃淡が描かれている.コンプレッ サーブレードはお互いが接近しており、レーザーが照射で きない部分があるが、コンプレッサーを傾けるなど可能な 限り広い面積に加工を行った.コンプレッサーの空気流路 に対するリブレットの加工面積率は約50.3%である.なお、 前節の CFD による推力改善予測量1.81%は、上記加工面 積にリブレットを付与した場合の予測となっている.

Fig. 8 Compressor with lasered riblet

ディフューザーは15箇所有る空気流路内側に加工を行った. Fig.9にリブレットの加工済みのディフューザーを示す. 同様に色の濃淡はリブレットピッチの変化によるものであり,同じ濃淡が各流路内に描かれている.ディフューザーの 羽根にいくつか存在する穴は,エンジン組み立て用のネジ穴 で有り,このネジ部にはリブレットの加工は行ってない.

タービンは、ブレードの腹側(正圧面),背側(負圧面) の両面と、プラットフォームに加工を行った.Fig. 10 にリ ブレットの加工済みタービンを示す.表面に模様があるよ うに見えているが、模様の入り方はピッチの変化と良く一 致しており、これが見えているものと考えられる.前2部 品と見え方が異なるのは、材質が異なるためと考えられる (前2部品はアルミ系合金、タービンはインコネル).

Fig. 9 Diffuser with lasered riblet

Fig. 10 Turbine with lasered riblet

5 超小型ジェットエンジン実測評価

5.1. 評価方法の概要

エンジン性能の評価は、コンプレッサー、ディフュー ザー、タービンの3部品にリブレットが無い部品とリブ レットが有る部品を用意し、同じ日に部品を入れ替える方 法で評価を行った.上記3部品とタービンに付いている シャフト以外の部品は、燃焼室も含め共通で使用している. なお、これらの交換部品によるエンジン性能の差は、推力、 燃料消費量ともに計測再現性以下であることを確認してい る.また、リブレット有りの評価は、上記3部品すべてリ ブレット有りとする場合のみを評価した.

エンジンの運転条件は CFD 解析条件と同様で,回転数 80,624 rpm,燃料は灯油 (JIS K 2203 1号灯油) にシャフト ベアリング向け潤滑剤を約6%配合した物を使用した.吸 入空気は外気をそのまま使用しているため,吸気温度,気 圧は時間経過により変動してしまうが,リブレット有り/ 無しの比較検証実施時の平均値は吸気温度 305.53 k (32.38℃), 大気圧 1011.48 hPa であった.

5.2. 温度・気圧変動補正

1

前節にあるように,吸気は外気をそのまま使用している ため,気温変動,気圧変動によりエンジン性能が変化して 計測されてしまう.

そこで、気温、気圧の変動を、標準気温、標準気圧相当 に換算可能な以下の計算式を使用し、エンジン性能を比較 することにした.エンジン運転時の大気状態を気圧:P,温 度:Tとし、標準の大気状態を P_0 , T_0 とし、 δ = P/P_0 , θ = T/T_0 とすると、

⑧正回転数
$$N_0 = \frac{N}{\sqrt{\theta}}$$
 (1)

修正推力
$$F_0 = \frac{F}{\delta}$$
 (2)

修正燃料流量
$$mf_0 = \frac{mf}{\delta\sqrt{\theta}}$$
 (3)

と表すことが出来る [15], [16].

回転数についても、気温、気圧により修正後の回転数は 基準回転数では無い回転数となってしまう.これを基準回 転数の 80,624 rpm にそろえるため、別途 70,000 rpm と 90,000 rpm の計測データを取得し、推力と回転数の相関か ら、常に 80,624 rpm 相当に換算する補正を行った.

これらの内容を適用,計算した修正推力と,計測した生 データの推力との結果の比較をFig.11に示す.修正前の推 力値は約2.8%バラついているが,修正推力の計算後は 0.7%のバラつきに収まっており,修正計算が良く機能して いることが解る.

5.3. リブレット付与によるエンジン性能比較

エンジン性能は、修正推力、修正燃料流量、修正燃料効率(=修正燃料流量/修正推力)の3性能で比較を行った. 計測再現性確保のため、リブレット有り/無し共に、7回 計測を行っている.

リブレット有り/無しのエンジン性能の比較検証結果を Fig. 12 に示す. 修正推力は,7回計測の平均値で比較する と,リブレット有りが平均1.44%上昇との結果であった. このときの計測再現性は,7回平均時には3σ率で0.42%が 期待でき,計測再現性上も優位な差と言える.次に修正燃 料流量は,リブレット有りが平均で0.20%消費量が多いと の結果であったが,計測再現性は3σ率で0.34%であり,こ ちらは優位差無しと判断した.これらから計算した修正燃 料効率は,リブレット有りが平均で1.22%効率が良いとの 結果で,同様に計測再現性は,3σ率で0.59%が期待でき, こちらは優位差と言える.

上記の値と、CFD 予測を比較した結果をTable 1 に示す. 実測値と CFD 予測との差は、修正推力で0.37%、修正燃 料効率で0.59%である.修正燃料流量は、実測値が優位差 では無く、CFD 予想の"変化無し"との差は無いものと判 断した.修正推力および修正燃料効率における、実測値と CFD 予想との差の原因は、リブレットの加工結果が完全な 理想形状には成っていないことが考えられる.リブレット の深さや、リブレットの峰頂点のとがり具合など加工形状 のさらなる改善を行えば、さらにエンジン性能が改善する 可能性もある.全体としては、実測値は CFD 予測と近い 結果と考えられる.以上のように、比較検証を行った3性 能において、リブレットがエンジン性能、効率を改善して いるとの検証結果を得た.

Fig. 12 Results of verification of riblet effect by actual measurement

		Corrected	Corrected fuel flow rate	Corrected fuel efficiency
CFD		1.81%	0 %	1.81%
Measured value		1.44%	-0.20%	1.22%
	Measurement reproducibility 3σ	0.42%	0.34%	0.59%
CFD - Measured value		0.37%	0%	0.59%

Table 1 Riblet improvement effect (experimental value, measurement reproducibility, CFD forecast)

超小型ジェットエンジンのコンプレッサー,ディフュー ザー,タービンにリブレットを適用した場合の,エンジン 推力の改善効果および,最適なリブレット設計を CFD に より求めた.上記3部品ともにリブレットを適用した場合 には,推力は1.81%上昇すると予測された.リブレット設 計に従ってレーザー加工によりリブレットを施したコンプ レッサー,ディフューザー,タービンを超小型ジェットエ ンジンに搭載し,リブレット有無のエンジン性能を実測評 価した結果,修正推力は1.44%上昇,修正燃料流量は優位 差無し,修正燃料効率は1.22%効率が改善した.これらに より,複雑な形状で高温環境,高速に回転するターボ機器 内の部品へ,レーザー加工によりリブレットを形成し,そ の効果をターボ機器性能の改善として示すことに世界で初 めて成功した.

また、本評価の稼働時タービン温度は約800-900℃であ り、本稿の効率改善結果は、リブレット付与後トータル8 時間以上稼働後の評価結果である.本評価後のリブレット は形状が問題無く維持されていることを確認しており、ま たこれまで示したように、効率改善も十分確認出来ている. 我々が行った母材の強度特性試験では、600℃条件の引張試 験、クリープ試験において、リブレット有無では強度特性 に差が無いことが確認されており [14]、本稿評価のタービ ンとは材質、温度、負荷時間などが異なるものの、直接加 工のリブレットに強度的な問題がないことは同様の傾向と なっている.

これらのことから,高温,回転系の空力部品にリブレットを付与し,ターボ機器の効率を改善する事は,確実に実 用化に近づいていると考えられる.

7 謝 辞

本研究の評価データ取りには,(有)フォックスコーポ レーション 橋本様,遠藤科学(株)馬塚様に多大なるご協 力を頂きました.ここに感謝の意を表します.

引用文献

- [1] 稲崎慎也,佐藤真路,一ノ瀬剛, P.A. Leitl, A. Flanschger,
 S. Schreck and R. Benauer, "超小型ジェットエンジンの 最適リブレット計算とそのレーザ加工,およびエンジン 性能での効果検証," *第49回日本ガスタービン学会定期講* 演会, A-25, 2021.
- [2] 三宅裕, "壁乱流の渦," ながれ, vol. 22, pp. 29-34, 2003
- [3] 鈴木雄二, 笠木伸英, "壁面乱流の知的能動制御," セー ブメーション・レビュー,マイクロフローセンサ特集号, pp. 50-57, 2001.
- [4] D. W. Bechert, G. Hoppe and W.-E. Reif, "On the drag reduction of shark skin," in *Proc. 23rd Aerospace Sciences Meeting*, 1985, doi: 10.2514/6.1985-546.
- [5] D. W. Bechert, M. Bartenwerfer, G. Hoppe and W.-E. Reif, "Drag reduction mechanisms derived from shark skin," in *Proc. 15th Congr. ICAS*, vol. 2, pp. 1044–1068, 1986.
- [6] "戦略的省エネルギー技術革新プログラム 省エネルギー技術開発事業の重要技術に係る周辺技術・関連課題の研究 革新的リブレットによる高速移動体の省エネルギー化技術 の調査研究,"成果報告書 2018年3月, NEDO, https://www. nedo.go.jp/library/seika/shosai_201803/2018000000035.html, 2018.
- [7] P. A. Leitl, V. Stenzel, A. Flanschger, H. Kordy, C. Feichtinger, Y. Kowalik, S. Schreck and D. Stübing, "Riblet surfaces for improvement of efficiency of wind turbines," in *Proc. AIAA Scitech 2020 Forum*, 2020, doi: 10.2514/6.2020–0308.
- [8] P. A. Leitl, E. Göttlich, A. Flanschger, A. Peters, C. Feichtinger, A. Marn and B. Reschenhofer, "Numerical investigation of optimal riblet size for TCF strut flow and their impact on the performance," in *Proc. AIAA Scitech 2020 Forum*, 2020, doi: 10.2514/6.2020-0307.

- [9] P. A. Leitl, M. L. Garcia De Albeniz and A. Flanschger, "Nano- and microstructured riblet surfaces for centrifugal industrial compressors," in *Proc. Conf. SUstainable PolyEn*ergy Generation and HaRvesting (SUPEHR), 2019, pp. 32-38.
- [10] A. Sareen, R. W. Deters, S. P. Henry and M. S. Selig, "Drag reduction using riblet film applied to airfoils for wind turbines," in *Proc. 49th AIAA Aerospace Sciences Meeting including the New Horizons Forum and Aerospace Exposition*, 2011, doi: 10.2514/6.2011-558.
- [11] B. N. Chichkov, C. Momma, S. Nolte, F. von Alvensleben and A. Tünnermann, "Femtosecond, picosecond, and nanosecond laser ablation of solids," *Appl. Phys. A*, vol. 63, pp. 109–115, 1996.
- [12] M. C. Richardson, "New opportunities with intense ultrashort-pulse lasers," in *Proc. OPTICS, ELECTRO-OPTICS, AND LASER APPLICATIONS IN SCIENCE AND ENGI-NEERING*, 1991, doi: 10.1117/12.43608.
- [13] P. A. Leitl, S. Kuntzagk, A. Flanschger and K. Pfingsten, "Experimental and numerical investigation of the reduction in skin friction due to riblets applied on the surface of a Taylor-Couette cell," in *Proc. of AIAA SciTech 2019Forum*, 2019, doi: 10.2514/6.2019–1625.
- [14] 綿引健二,蘆田憲一,土橋晋太郎,土橋広和,佐藤真路, ーノ瀬剛,"ガスタービン圧縮機部材へのレーザー加工に よる、リブレット形成と機械特性評価結果,"第49回日本 ガスタービン学会定期講演会,B-27,2021.
- [15] 日本ガスタービン学会,ガスタービン工学,改訂第一版, 日本ガスタービン学会,2017.
- [16] 中村佳朗, 鈴木弘一, ジェットエンジン, 森北出版, 2004.

Stefan SCHRECK

Richard BENAUER

Bionic Surface Technologies 社

Bionic Surface Technologies 社

Bionic Surface Technologies

Bionic Surface Technologies

稲崎慎也 Shinya INASAKI 次世代プロジェクト本部 第二開発部 2nd Development Department Next Generation Project Division

Peter A. LEITL Bionic Surface Technologies 社 Bionic Surface Technologies

Andreas FLANSCHGER Bionic Surface Technologies 社 Bionic Surface Technologies

稲崎慎也 Shinya INASAKI

Peter A. LEITL

Andreas FLANSCHGER

Stefan SCHRECK

Richard BENAUER