ECLIPSE LV-N Industrial Microscopes
Together with new optics, ECLIPSE is evolving to the next stage.

Modularized to meet industrial microscope applications in diverse fields of industry, including semiconductor devices, packaging, FPDs, electronic components, materials, and precision molds.

The ECLIPSE LV Series continues to evolve while offering various stand and illumination units selectable according to the observation method and purpose.

Four types – motorized and manual types plus dedicated reflected illumination and combined reflected/ transmitted illumination types – are available to meet any application.

Illuminators

Expanded lineup
Added a compact LED illuminator to the existing lineup. With the use of LED, Nikon illuminators are power saving and achieve long life.

Evolved optical performance
Nikon’s CFI60 optical system, highly evaluated for its unique concept of high NA combined with long working distance has further evolved to achieve the apex in long working distance, chromatic aberration correction, and light weight.

Easy Operation

Combination with digital camera
Detection of microscope information, including objective lens information, and motorized unit microscope operation are now possible using the digital control unit, for more efficient observation and image capture.

Observation Methods

Diverse observation methods
Combinations of a full range of accessories expand the observation methods available when using transmitted illumination, allowing adaptability to a greater diversity of samples.
All models enable brightfield, darkfield, differential interference, fluorescence, polarizing, and two-beam interferometry observation, while the LV100ND and LV100NDA also allow transmission-type differential interference, darkfield, polarizing, and phase contrast observation.
Model features

LV-N Series

<table>
<thead>
<tr>
<th>Microscope type</th>
<th>Compatible observation methods</th>
<th>Compatible stages</th>
<th>Integration with Digital Light cameras for microscopes</th>
</tr>
</thead>
<tbody>
<tr>
<td>Manual type</td>
<td>Dedicated reflected illumination models</td>
<td>LV150N/LV150NL</td>
<td>DS-L4 (Microscope camera control unit)</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>DS-R12 or DS-F13 + NIS-Elements</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>(Microscope camera + imaging software)</td>
</tr>
<tr>
<td></td>
<td>Motorized type</td>
<td>LV150NA</td>
<td>DS-L4 (Microscope camera control unit)</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>DS-R12 or DS-F13 + NIS-Elements</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>(Microscope camera + imaging software)</td>
</tr>
<tr>
<td></td>
<td>Combined reflected/transmitted illumination models</td>
<td>LV100ND/LV100NDA</td>
<td>DS-L4 (Microscope camera control unit)</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>DS-R12 or DS-F13 + NIS-Elements</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>(Microscope camera + imaging software)</td>
</tr>
</tbody>
</table>

LV150N
- **Model features**
 - Microscope type: LV150N/LV150NL
 - **Compatible observation methods**
 - Dedicated reflected illumination models
 - Manual type
 - Episcopic
 - Brightfield
 - Darkfield
 - DIC
 - Fluorescence
 - Polarizing
 - Ten-beam Interferometry
 - Motorized type
 - Episcopic
 - Brightfield
 - Darkfield
 - DIC
 - Fluorescence
 - Polarizing
 - Ten-beam Interferometry
 - **Compatible stages**
 - LV-S32 3x2 stage (Stroke: 75 x 50 mm with glass plate)
 - LV-S6 6x6 stage (Stroke: 150 x 150 mm)
 - LV-SRP P revolving stage
 - LV150/ LV150NA
 - LV150NL
 - LV150
 - LV150
 - **Integration with Digital Light cameras for microscopes**
 - DS-L4 (Microscope camera control unit)
 - DS-R12 or DS-F13 + NIS-Elements (Microscope camera + imaging software)

LV150NA
- **Model features**
 - Microscope type: LV150N/LV150NL
 - **Compatible observation methods**
 - Dedicated reflected illumination models
 - Manual type
 - Episcopic
 - Brightfield
 - Darkfield
 - DIC
 - Fluorescence
 - Polarizing
 - Ten-beam Interferometry
 - Motorized type
 - Episcopic
 - Brightfield
 - Darkfield
 - DIC
 - Fluorescence
 - Polarizing
 - Ten-beam Interferometry
 - **Compatible stages**
 - LV-S32 3x2 stage (Stroke: 75 x 50 mm with glass plate)
 - LV-S6 6x6 stage (Stroke: 150 x 150 mm)
 - LV-SRP P revolving stage
 - LV150/ LV150NA
 - LV150NL
 - LV150
 - LV150
 - **Integration with Digital Light cameras for microscopes**
 - DS-L4 (Microscope camera control unit)
 - DS-R12 or DS-F13 + NIS-Elements (Microscope camera + imaging software)

LV100ND
- **Model features**
 - Microscope type: LV100ND/LV100NDA
 - **Compatible observation methods**
 - Combined reflected/transmitted illumination models
 - Manual type
 - Episcopic
 - Brightfield
 - Darkfield
 - DIC
 - Fluorescence
 - Polarizing
 - Ten-beam Interferometry
 - Diascopic
 - Brightfield
 - Darkfield
 - DIC
 - Fluorescence
 - Polarizing
 - Ten-beam Interferometry
 - Phase-contrast
 - **Compatible stages**
 - LV-S32 3x2 stage (Stroke: 75 x 50 mm with glass plate)
 - LV-S6 6x6 stage (Stroke: 150 x 100 mm with glass plate)
 - LV-SRP P revolving stage
 - LV100/ LV100DA-U
 - LV100ND/LV100NDA-U
 - LV100NL
 - LV100N
 - LV100N
 - **Integration with Digital Light cameras for microscopes**
 - DS-L4 (Microscope camera control unit)
 - DS-R12 or DS-F13 + NIS-Elements (Microscope camera + imaging software)

LV100NDA
- **Model features**
 - Microscope type: LV100ND/LV100NDA
 - **Compatible observation methods**
 - Combined reflected/transmitted illumination models
 - Manual type
 - Episcopic
 - Brightfield
 - Darkfield
 - DIC
 - Fluorescence
 - Polarizing
 - Ten-beam Interferometry
 - Diascopic
 - Brightfield
 - Darkfield
 - DIC
 - Fluorescence
 - Polarizing
 - Ten-beam Interferometry
 - Phase-contrast
 - **Compatible stages**
 - LV-S32 3x2 stage (Stroke: 75 x 50 mm with glass plate)
 - LV-S6 6x6 stage (Stroke: 150 x 100 mm with glass plate)
 - LV-SRP P revolving stage
 - LV100/ LV100DA-U
 - LV100ND/LV100NDA-U
 - LV100NL
 - LV100N
 - LV100N
 - **Integration with Digital Light cameras for microscopes**
 - DS-L4 (Microscope camera control unit)
 - DS-R12 or DS-F13 + NIS-Elements (Microscope camera + imaging software)
Evolved optical performance

Nikon’s CFI optical system, highly evaluated for its unique concept of high NA and long working distance, has achieved the apex in long working distance, chromatic aberration correction, and light weight.

T Plan & TU Plan Fluor & TU Plan Apo Lenses

Standard objective lenses

TU Plan Fluor Series

- **EPI/DI** 5x/10x/20x/50x/100x
- **50x/100x**
- **20×/50×/100×**

Enable brightfield, darkfield, simple polarizing, sensitive polarizing, differential interference, and ap fluorescence observations with just one lens. Achieves superior chromatic aberration performance with long working distances for all magnifications to adapt to any application.

TU Plan ELWD & T Plan SLWD Lenses

Long working distance objective lenses

TU Plan EPI

- **150× 0.9 1.5**
- **100× 0.8 2.0**
- **50× 0.6 1.1**

TU Plan Apo

- **150× 0.8 1.2**
- **100× 0.6 2.0**
- **50× 0.45 4.5**

Extra-long working distance objective lenses

TU Plan EPI

- **20× 0.3 37.0**
- **10× 0.2 74.0**

TU Plan Apo

- **20× 0.2 37.0**
- **10× 0.1 74.0**

Apochromatic objective lenses

TU Plan Apo Series

- **50×/100×/150×**

By using phase Fresnel lenses, these objective lenses achieve significantly longer operating distances while maintaining the superior chromatic aberration performance of apochromatic lenses.

Other objective lenses

CFI L Plan EPI CR 20x/50x/100x

- **50× 0.6 11.0**
- **20× 0.4 19.0**

CFI IC EPI Plan TI/DI 2.5×/5×/10×

- **2.5× 0.0 75.0**
- **5× 0.0 15.0**
- **10× 0.0 7.50**

CFI IC EPI Plan T/D 10x/20x/50x/100x 2.5x/5x

- **10× 0.3 7.00**
- **20× 0.5 4.50**
- **50× 0.5 3.40**
- **100× 0.37 2.00**

Color aberration correction and longer working distance through phase Fresnel lenses

Conventional lenses rely upon the refraction of light to form an image. As the strength of refraction varies according to color (wavelength), the image is formed starting with the light closest to the lens, in the order of blue, green, and red. In contrast, a phase Fresnel lens uses the diffraction of light to form an image starting with the light closest to the lens, this time, red, green, and blue, yielding a property opposite that of refraction. Combining these two lens cancels out the color aberration of each and enables an image with little color aberration.

Realization of Long Working Distance

Correction of color aberration, even with short distances between lenses, is possible with the use of phase Fresnel lenses. This enables longer working distance than that of conventional lenses.

Dark Field Illumination

- **Fly-eye lens**

 - Through the use of fly-eye lenses, the CFI-2 optical system offers bright darkfield illumination throughout the field of view with little unevenness, even for low-magnification lenses.

- **New darkfield illumination system**

 - As NA and W.D. improve, objective lenses increase in outside diameter. However, as the width of incident light is fixed, light intensity decreases with conventional illumination systems. The new illumination system uses annular lenses or annular prisms to increase captured light and achieve bright darkfield illumination with no deterioration.

Phase Fresnel lenses

- **Refracting lens**

 - White light is separated into individual wavelengths by diffraction and passes through the lens. The longer wavelengths mean the focal point becomes farther.

- **Mutual cancellation to correct color aberration**

 - White light is separated into individual wavelengths by diffraction and passes through the lens. The mutual cancellation of each wavelength results in a clear image.

Non-phase Fresnel lenses

- **White light**

 - Separated into individual wavelengths by refraction and passes through the lens. The focal points become closer with shorter wavelengths.

W.D. lengthened by amount lens is shortened

- **Using new darkfield illumination system**

 - *Brightfield observation (EPI) objective lens*
Easy Operation

Combination with digital camera

LV150N/LV100ND/LV150NA

Information about the objective lens being used can be detected via the camera control unit when combining the Intelligent Nosepiece LV-NUSI and the Nosepiece Adaptor LV-INAD. The information is automatically converted to appropriate calibration data when changing the magnification. In addition, the LV150NA allows switching of objective lenses via the camera control unit or the imaging software.

LV100NDA

The LV100NDA allows detection of objective lenses, light intensity, aperture stop, and observation method (brightfield / darkfield / fluorescence) via the camera control unit or the imaging software, enabling optimization of the conditions vital for image acquisition. Combining the Intelligent Nosepiece LV-NU5I and the Nosepiece Adaptor LV-INAD. The information about the objective lens being used can be detected via the camera control unit when using LV-INAD combined with LV150N.

* LV-LH50PC: Information detection only, when the control unit DS-L4 is connected. Control of the objective lens, light intensity, aperture stop, and observation method (brightfield / darkfield / fluorescence) is possible when the DS-Ri2 or DS-Fi3 (with NIS-Elements) is connected.

* When using LV-INAD combined with LV150N

* DS-L4 can be connected to the DS-Ri2/lateral style control unit, eliminating the need and space requirements of a desktop PC. DS-L4 has a large number of built-in security for network connectivity.

Compatibility Chart of Information Detection and Control by Model

<table>
<thead>
<tr>
<th>LV150N/LV100ND/LV150NA</th>
<th>LV150N</th>
<th>LV100NDA</th>
</tr>
</thead>
<tbody>
<tr>
<td>Information detection</td>
<td>ON</td>
<td>ON</td>
</tr>
<tr>
<td>control possible</td>
<td>ON</td>
<td>ON</td>
</tr>
<tr>
<td>Objective lens</td>
<td>ON</td>
<td>ON</td>
</tr>
<tr>
<td>Reflected illumination (ON/OFF)</td>
<td>ON</td>
<td>ON</td>
</tr>
<tr>
<td>Transmitted illumination (ON/OFF)</td>
<td>ON</td>
<td>ON</td>
</tr>
<tr>
<td>Aperture stop</td>
<td>ON</td>
<td>ON</td>
</tr>
<tr>
<td>Observation method selector (brightfield / darkfield / fluorescence)</td>
<td>ON</td>
<td>ON</td>
</tr>
</tbody>
</table>

* NIS-Elements F (free package) is not compatible with information detection and control. Please use NIS-Elements D/Br/Ar.

Camera System

DS-Ri2

Capable of expressing images as is. DS-Ri2 offers high resolution, color reproduction, and frame rate. The Stand-Alone Model enables high-definition image acquisition without a control unit.

DS-Fi3

Features high-resolution, high sensitivity/low noise, and high-speed live display, all in one camera.

Microscope Camera control unit

DS-Fi3 can be connected to the DS-Ri2/lateral style control unit, eliminating the need and space requirements of a desktop PC. DS-L4 has a large number of built-in security for network connectivity.

Image Stitching

Stitches together images acquired from multiple fields of view to create one image.

EDF (Extended Depth of Focus)

Create a single, all-in-focus image from images of differing focus.

Variety of Tool Features

Enables easy measurements directly on the images, with input of lines and comments. Measurements can be written and saved with the image, and data can be output.

Stand-Alone Model

Microscope Camera

DS-Ri2

Microscope Camera

DS-Fi3

Imaging software

NIS-Elements series

Scene Mode

Optimal imaging parameters for each sample type and observation method can easily be set through the icons.

Variety of Tool Features

Enables easy measurements directly on the images, with input of lines and comments. Measurements can be written and saved with the image, and data can be output.

Stand-Alone Model

Microscope Camera

DS-Ri2

Microscope Camera

DS-Fi3

Imaging software

NIS-Elements series

Scene Mode

Optimal imaging parameters for each sample type and observation method can easily be set through the icons.

Variety of Tool Features

Enables easy measurements directly on the images, with input of lines and comments. Measurements can be written and saved with the image, and data can be output.

Stand-Alone Model

Microscope Camera

DS-Ri2

Microscope Camera

DS-Fi3

Imaging software

NIS-Elements series

Scene Mode

Optimal imaging parameters for each sample type and observation method can easily be set through the icons.

Variety of Tool Features

Enables easy measurements directly on the images, with input of lines and comments. Measurements can be written and saved with the image, and data can be output.
Observation Methods

Compatible with a wide range of observation methods: brightfield, darkfield, polarizing, differential interference, epi-fluorescence, and two-beam interferometry.

Brightfield

- Semiconductors (IC wafers)
- Electron microscopy: metal films, fruit, etc.
- Optical microscopy: liquid crystals
- Aqueous samples: crystals or plastics/glass containing distortion.

Darkfield

- Minerals
- Colorless, transparent samples can be made visible through bright/dark contrast.

Polarizing

- Two-beam Interferometry
- Substrate (solder)
- Silicon:
- Observation is possible.
- rural 20...
- 1105...
- 8.6 kg
- Approx. 8.7 kg
- Approx. 8.6 kg

Epi-fluorescence

- Substrate
- Standard-type and high-contrast-type DIC slides are available to match samples. The LV-N Series is effective for observations of minute level differences in devices and precision molds.

Phase Contrast

- Nanoparticle (silver)
- Colorless, transparent samples can be observed in three dimensions by using polarization to create interference between two beams of light.

Diascopic Brightfield

- Observation of samples with fluorescent properties.
- The LV-N Series demonstrates superiority in the observation of samples with fluorescent properties.

DIC

- Diascopic DIC
- Diascopic Brightfield
- Substrate
- Standard-type and high-contrast-type DIC slides are available to match samples. The LV-N Series is effective for observations of minute level differences in devices and precision molds.

Episcopic Brightfield

- Observation of samples with fluorescent properties.
- The LV-N Series demonstrates superiority in the observation of samples with fluorescent properties.

Brightfield

- Observation of samples with fluorescent properties.
- The LV-N Series demonstrates superiority in the observation of samples with fluorescent properties.

Epi-fluorescence

- Observation of samples with fluorescent properties.
- The LV-N Series demonstrates superiority in the observation of samples with fluorescent properties.

Diffraction

- Observation of samples with fluorescent properties.
- The LV-N Series demonstrates superiority in the observation of samples with fluorescent properties.

Flare

- Observation of samples with fluorescent properties.
- The LV-N Series demonstrates superiority in the observation of samples with fluorescent properties.

Specifications

LV N100

- Maximum sample height: 38 mm (when used with LV N100 IBD nosepiece and LV 53D 2x stage / LV 564 6x stage)
- *73 mm when used with one column rear objective LED illumination power source, coarse and fine adjustment knobs: Front coarse and fine adjustment (right fine adjustment, 40 mm stroke)
- Coarse adjustment: 14 mm (with torque adjustment, releasing mechanism)
- Fine adjustment: 0.1 mm (1 μm/graduation)
- Stage mounting hole intervals: 70 x 94 (fixed by 4-M4 screw)
- Weight: Approx. 8.6 kg

LV 500N

- Maximum sample height: 38 mm (when used with LV 53D 2x stage)
- *73 mm when used with one column rear objective LED illumination power source, coarse and fine adjustment knobs: Front coarse and fine adjustment (right fine adjustment, 40 mm stroke)
- Coarse adjustment: 14 mm (with torque adjustment, releasing mechanism)
- Fine adjustment: 0.1 mm (1 μm/graduation)
- Stage mounting hole intervals: 70 x 94 (fixed by 4-M4 screw)
- Weight: Approx. 8.6 kg
Lens Specifications

Dimensions

![Image of lens dimensions](image_url)

Table: Lens Specifications

<table>
<thead>
<tr>
<th>Type</th>
<th>Model</th>
<th>Magnification</th>
<th>Product Code No.</th>
<th>NA</th>
<th>Working Distance (mm)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Brightfield</td>
<td>T Plan EPI</td>
<td>1×</td>
<td>MUE120010</td>
<td>0.03</td>
<td>3.9</td>
</tr>
<tr>
<td></td>
<td></td>
<td>2.5x</td>
<td>MUE120500</td>
<td>0.075</td>
<td>6.9</td>
</tr>
<tr>
<td></td>
<td>TU Plan Fluor EPI</td>
<td>5×</td>
<td>MUE120500</td>
<td>0.15</td>
<td>20.5</td>
</tr>
<tr>
<td></td>
<td>Universal Plan Fluor (Semichromat)</td>
<td>10×</td>
<td>MUE121000</td>
<td>0.3</td>
<td>17.5</td>
</tr>
<tr>
<td></td>
<td></td>
<td>20×</td>
<td>MUE122000</td>
<td>0.45</td>
<td>4.5</td>
</tr>
<tr>
<td></td>
<td></td>
<td>50×</td>
<td>MUE125000</td>
<td>0.8</td>
<td>1.0</td>
</tr>
<tr>
<td></td>
<td>TU Plan Apo EPI</td>
<td>50×</td>
<td>MUC121000</td>
<td>0.9</td>
<td>2.0</td>
</tr>
<tr>
<td></td>
<td>Universal Plan Apo (Apochromat)</td>
<td>100×</td>
<td>MUC121500</td>
<td>0.9</td>
<td>2.0</td>
</tr>
<tr>
<td></td>
<td></td>
<td>150×</td>
<td>MUC121150</td>
<td>0.9</td>
<td>1.5</td>
</tr>
<tr>
<td></td>
<td>Polarizing</td>
<td>5×</td>
<td>MUE120500</td>
<td>0.15</td>
<td>20.5</td>
</tr>
<tr>
<td></td>
<td>Polarizing Universal Plan Fluor (Semichromat)</td>
<td>10×</td>
<td>MUE121000</td>
<td>0.3</td>
<td>17.5</td>
</tr>
<tr>
<td></td>
<td></td>
<td>20×</td>
<td>MUE122000</td>
<td>0.45</td>
<td>4.5</td>
</tr>
<tr>
<td></td>
<td></td>
<td>50×</td>
<td>MUE125000</td>
<td>0.8</td>
<td>1.0</td>
</tr>
<tr>
<td></td>
<td>TU Plan EPI ELWD</td>
<td>100×</td>
<td>MUE121500</td>
<td>0.9</td>
<td>1.0</td>
</tr>
<tr>
<td></td>
<td>Long Working Distance Universal Plan (Semiapochromat)</td>
<td>20×</td>
<td>MUE122000</td>
<td>0.4</td>
<td>19.0</td>
</tr>
<tr>
<td></td>
<td></td>
<td>50×</td>
<td>MUE212000</td>
<td>0.7</td>
<td>11.0</td>
</tr>
<tr>
<td></td>
<td></td>
<td>100×</td>
<td>MUE215000</td>
<td>0.9</td>
<td>4.5</td>
</tr>
<tr>
<td></td>
<td>T Plan EPI SLWD</td>
<td>50×</td>
<td>MUE131000</td>
<td>0.8</td>
<td>2.0</td>
</tr>
<tr>
<td></td>
<td>Super-long Working Distance Plan (Semichromat)</td>
<td>100×</td>
<td>MUE131500</td>
<td>0.9</td>
<td>2.0</td>
</tr>
<tr>
<td></td>
<td></td>
<td>150×</td>
<td>MUE132100</td>
<td>0.9</td>
<td>1.5</td>
</tr>
<tr>
<td></td>
<td></td>
<td>20×</td>
<td>MUE212000</td>
<td>0.8</td>
<td>1.0</td>
</tr>
<tr>
<td></td>
<td></td>
<td>50×</td>
<td>MUE215000</td>
<td>0.8</td>
<td>2.0</td>
</tr>
<tr>
<td></td>
<td></td>
<td>100×</td>
<td>MUE219000</td>
<td>0.8</td>
<td>4.5</td>
</tr>
<tr>
<td>Brightfield/Darkfield</td>
<td>T Plan EPI ELWD</td>
<td>50×</td>
<td>MUC415000</td>
<td>0.95</td>
<td>2.0</td>
</tr>
<tr>
<td></td>
<td>Long Working Distance Universal Plan (Semiapochromat)</td>
<td>100×</td>
<td>MUC419000</td>
<td>0.95</td>
<td>2.0</td>
</tr>
<tr>
<td></td>
<td></td>
<td>150×</td>
<td>MUC411500</td>
<td>0.95</td>
<td>1.5</td>
</tr>
<tr>
<td></td>
<td></td>
<td>20×</td>
<td>MUE612000</td>
<td>0.4</td>
<td>19.0</td>
</tr>
<tr>
<td></td>
<td></td>
<td>50×</td>
<td>MUE615000</td>
<td>0.6</td>
<td>11.0</td>
</tr>
<tr>
<td></td>
<td></td>
<td>100×</td>
<td>MUE619000</td>
<td>0.8</td>
<td>4.5</td>
</tr>
<tr>
<td></td>
<td>L Plan EPI CR</td>
<td>20×</td>
<td>MUE325000</td>
<td>0.45</td>
<td>19.0 - 30.0</td>
</tr>
<tr>
<td></td>
<td>For Inspecting LCD's Plan</td>
<td>50×</td>
<td>MUE325000</td>
<td>0.7</td>
<td>3.9 - 3.9</td>
</tr>
<tr>
<td></td>
<td></td>
<td>100×</td>
<td>MUE360000</td>
<td>0.85</td>
<td>1.3 - 1.3</td>
</tr>
<tr>
<td></td>
<td></td>
<td>150×</td>
<td>MUE361500</td>
<td>0.95</td>
<td>1.3 - 1.3</td>
</tr>
<tr>
<td>Brightfield</td>
<td>L Plan EPI Plan (Achromat)</td>
<td>40×</td>
<td>MUE300021</td>
<td>0.65</td>
<td>1.0</td>
</tr>
<tr>
<td>Brightfield/Darkfield</td>
<td>L Plan EPI SLWD</td>
<td>25×</td>
<td>MUE301001</td>
<td>0.35</td>
<td>24.0</td>
</tr>
<tr>
<td></td>
<td>Super-long Working Distance Plan (Achromat)</td>
<td>50×</td>
<td>MUE302001</td>
<td>0.7</td>
<td>17.0</td>
</tr>
<tr>
<td></td>
<td></td>
<td>100×</td>
<td>MUE305000</td>
<td>0.7</td>
<td>6.5</td>
</tr>
<tr>
<td>Brightfield</td>
<td>LU Plan Apo EPI</td>
<td>100×</td>
<td>MUC300080</td>
<td>0.85</td>
<td>0.4</td>
</tr>
<tr>
<td>Brightfield/Darkfield</td>
<td>Universal Plan Apo (Apochromat)</td>
<td>150×</td>
<td>MUC301010</td>
<td>0.85</td>
<td>0.3</td>
</tr>
<tr>
<td></td>
<td></td>
<td>200×</td>
<td>MUC301500</td>
<td>0.9</td>
<td>0.2</td>
</tr>
<tr>
<td></td>
<td>LU Plan Apo BD</td>
<td>100×</td>
<td>MUC400021</td>
<td>0.9</td>
<td>2.0</td>
</tr>
<tr>
<td></td>
<td>Universal Plan Apo (Apochromat)</td>
<td>150×</td>
<td>MUC401010</td>
<td>0.9</td>
<td>2.0</td>
</tr>
<tr>
<td>Interferometry</td>
<td>CF IC EPI Plan Ti</td>
<td>5×</td>
<td>MLI420010</td>
<td>0.13</td>
<td>9.0</td>
</tr>
<tr>
<td></td>
<td>For Interferometry Plan</td>
<td>10×</td>
<td>MLI421010</td>
<td>0.3</td>
<td>7.4</td>
</tr>
<tr>
<td></td>
<td></td>
<td>20×</td>
<td>MLI422010</td>
<td>0.4</td>
<td>4.7</td>
</tr>
<tr>
<td></td>
<td></td>
<td>50×</td>
<td>MLI425010</td>
<td>0.5</td>
<td>3.4</td>
</tr>
<tr>
<td></td>
<td></td>
<td>100×</td>
<td>MLI429010</td>
<td>0.7</td>
<td>2.0</td>
</tr>
<tr>
<td></td>
<td>CF IC EPI Plan D1</td>
<td>5×</td>
<td>MLI402010</td>
<td>0.13</td>
<td>9.0</td>
</tr>
<tr>
<td></td>
<td>For Two-beam Interferometry Plan</td>
<td>10×</td>
<td>MLI401010</td>
<td>0.3</td>
<td>7.4</td>
</tr>
<tr>
<td></td>
<td></td>
<td>20×</td>
<td>MLI402010</td>
<td>0.4</td>
<td>4.7</td>
</tr>
<tr>
<td></td>
<td></td>
<td>50×</td>
<td>MLI405010</td>
<td>0.5</td>
<td>3.4</td>
</tr>
<tr>
<td></td>
<td></td>
<td>100×</td>
<td>MLI409010</td>
<td>0.7</td>
<td>2.0</td>
</tr>
<tr>
<td></td>
<td>CF IC EPI Plan Apo</td>
<td>5×</td>
<td>MLI701010</td>
<td>0.35</td>
<td>0.4</td>
</tr>
<tr>
<td></td>
<td>Plan Apochromat</td>
<td>100×</td>
<td>MLI701010</td>
<td>0.35</td>
<td>0.3</td>
</tr>
</tbody>
</table>

- **Note:** Please refer to the manufacturer's documentation for detailed specifications.

Table Notes:
- Working Distance (mm) represents the distance the lens can work effectively.
- NA (Numerical Aperture) indicates the lens's ability to focus on different objects.

Model:
- **T Plan EPI:** Plan (Semiapochromat)
- **TU Plan Fluor EPI:** Universal Plan Fluor (Semiapochromat)
- **TU Plan Apo EPI:** Universal Plan Apo (Apochromat)
- **TU Plan EPI ELWD:** Long Working Distance Universal Plan (Semiapochromat)
- **TU Plan EPI SLWD:** Super-long Working Distance Plan (Semiapochromat)
- **TU Plan Apo BD:** Universal Plan Apo (Apochromat)
- **LU Plan EPI Plan (Achromat):** For Inspecting LCD's Plan
- **LU Plan EPI SLWD:** Super-long Working Distance Plan (Achromat)
- **LU Plan Apo EPI:** Universal Plan Apo (Apochromat)
- **LU Plan Apo BD:** Universal Plan Apo (Apochromat)
- **CF IC EPI Plan Ti:** For Interferometry Plan
- **CF IC EPI Plan D1:** For Two-beam Interferometry Plan
- **CF IC EPI Plan Apo:** Plan Apochromat

Additional Information:
- Brightfield/Plan EPI offers higher contrast and resolution for brightfield imaging.
- Brightfield/Lu Plan Fluor EPI provides enhanced imaging for darkfield applications.
- Brightfield/Lu Plan Apo BD enhances the contrast and resolution for high magnification imaging.
- **Interferometry:** CF IC EPI Plan Ti offers increased accuracy for interferometry applications.
- CF IC EPI Plan D1 improves the resolution for two-beam interferometry.
- CF IC EPI Plan Apo provides enhanced imaging for apochromat applications.