ECLIPSE LV-N
Industrial Microscopes
Together with new optics, ECLIPSE is evolving to the next stage.

Modularized to meet industrial microscope applications in diverse fields of industry, including semiconductor devices, packaging, FPDs, electronic components, materials, and precision molds.

The ECLIPSE LV Series continues to evolve while offering various stand and illumination units selectable according to the observation method and purpose.

Four types – motorized and manual types plus dedicated reflected illumination and combined reflected/transmitted illumination types – are available to meet any application.

Illuminators

Expanded lineup

Added a compact LED illuminator to the existing lineup. With the use of LED, Nikon illuminators are power saving and achieve long life.

CFL60-2

Evolved optical performance

Nikon’s CFL60 optical system, highly evaluated for its unique concept of high NA combined with long working distance has further evolved to achieve the apex in long working distance, chromatic aberration correction, and light weight.

Easy Operation

Combination with digital camera

Detection of microscope information, including objective lens information, and motorized unit microscope operation are now possible using imaging software, for more efficient observation and image capture.

Observation Methods

Diverse observation methods

Combinations of a full range of accessories expand the observation methods available when using transmitted illumination, allowing adaptability to a greater diversity of samples. All models enable brightfield, darkfield, differential interference, fluorescence, polarizing, and two-beam interferometry observation, while the LV100ND and LV100NDA also allow transmission-type differential interference, darkfield, polarizing, and phase contrast observation.
Model features

Dedicated reflected illumination models

<table>
<thead>
<tr>
<th>Microscope type</th>
<th>Compatible observation methods</th>
<th>Compatible stages</th>
</tr>
</thead>
<tbody>
<tr>
<td>LV150N</td>
<td></td>
<td></td>
</tr>
<tr>
<td>LV150NL</td>
<td></td>
<td></td>
</tr>
<tr>
<td>LV150NA</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Manual type

<table>
<thead>
<tr>
<th>Brightfield</th>
<th>Darkfield</th>
<th>DIC</th>
<th>Episcopic (LED)</th>
<th>Fluorescence</th>
<th>Polarizing</th>
<th>Two-beam interferometry</th>
</tr>
</thead>
<tbody>
<tr>
<td>LV150/ LV150NA</td>
<td>Episcopic</td>
<td>O</td>
<td>O</td>
<td>O</td>
<td>O</td>
<td>O</td>
</tr>
<tr>
<td>LV150NL</td>
<td>Episcopic</td>
<td>O</td>
<td>O</td>
<td>O</td>
<td>—</td>
<td>—</td>
</tr>
</tbody>
</table>

* * Use an objective lens appropriate to the observation method.

* Only simple polarizing observation

Motorized type

<table>
<thead>
<tr>
<th>Brightfield</th>
<th>Darkfield</th>
<th>DIC</th>
<th>Episcopic (LED)</th>
<th>Fluorescence</th>
<th>Polarizing</th>
<th>Two-beam interferometry</th>
</tr>
</thead>
<tbody>
<tr>
<td>LV100ND</td>
<td>Episcopic</td>
<td>O</td>
<td>O</td>
<td>O</td>
<td>O</td>
<td>O</td>
</tr>
<tr>
<td>LV100NDU</td>
<td>Episcopic</td>
<td>O</td>
<td>O</td>
<td>O</td>
<td>–</td>
<td>–</td>
</tr>
<tr>
<td>LV100NDA</td>
<td>Episcopic</td>
<td>O</td>
<td>O</td>
<td>O</td>
<td>–</td>
<td>–</td>
</tr>
</tbody>
</table>

* * Use an objective lens appropriate to the observation method.

* Only simple polarizing observation

Combined reflected/transmitted illumination models

<table>
<thead>
<tr>
<th>Microscope type</th>
<th>Compatible observation methods</th>
<th>Compatible stages</th>
</tr>
</thead>
<tbody>
<tr>
<td>LV100ND</td>
<td></td>
<td></td>
</tr>
<tr>
<td>LV100NDA</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Manual type

<table>
<thead>
<tr>
<th>Brightfield</th>
<th>Darkfield</th>
<th>DIC</th>
<th>Episcopic (LED)</th>
<th>Fluorescence</th>
<th>Polarizing</th>
<th>Two-beam interferometry</th>
<th>Phase-contrast</th>
</tr>
</thead>
<tbody>
<tr>
<td>LV100ND</td>
<td>Episcopic</td>
<td>O</td>
<td>O</td>
<td>O</td>
<td>O</td>
<td>O</td>
<td>O</td>
</tr>
<tr>
<td>LV100NDU</td>
<td>Episcopic</td>
<td>O</td>
<td>O</td>
<td>O</td>
<td>–</td>
<td>–</td>
<td>–</td>
</tr>
<tr>
<td>LV100NDA</td>
<td>Episcopic</td>
<td>O</td>
<td>O</td>
<td>O</td>
<td>–</td>
<td>–</td>
<td>–</td>
</tr>
</tbody>
</table>

* * Use an objective lens appropriate to the observation method.

* Only simple polarizing observation

Motorized type

<table>
<thead>
<tr>
<th>Brightfield</th>
<th>Darkfield</th>
<th>DIC</th>
<th>Episcopic (LED)</th>
<th>Fluorescence</th>
<th>Polarizing</th>
<th>Two-beam interferometry</th>
<th>Phase-contrast</th>
</tr>
</thead>
<tbody>
<tr>
<td>LV-S32 3x2 stage (Stroke: 75 x 50 mm with glass plate)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>*Can be fitted with LV-S32SGH slide glass holder</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>LV-S6 6x6 stage (Stroke: 150 x 150 mm)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>*Can be fitted with LV-S6WH wafer holder / LV-S6PL ESD plate</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>LV-SRP P revolving stage</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>P-6PS2 G stage 2 (Used with stage adapter LV-SAD)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

* * Use an objective lens appropriate to the observation method.

* Only simple polarizing observation

DS-Ri2 or DS-F13 + NIS-Elements

- **Objective lens information detection**
 (when used with combination of Intelligent Nosepiece LV-NUI and LV-INAD)

DS-Ri2 or DS-F13 + NIS-Elements

- **Objective lens information detection and control**
 (when used with combination of Intelligent Nosepiece LV-NUI and LV-INAD)
Nikon’s CFI60 optical system, highly evaluated for its unique concept of high NA and long working distance, has achieved the apex in long working distance, chromatic aberration correction, and light weight.

T Plan & TU Plan Fluor & TU Plan Apo Lenses

TU Plan Fluor Series
- **5x/10x/20x/50x/100x**
 - Enables brightfield, darkfield, simple polarizing, sensitive polarizing, differential interference, and anti-fluorescence observations with just one lens. Achieves superior chromatic aberration performance with long working distance for all magnifications to adapt to any application.

TU Plan EPI
- **1x/2.5x**
 - Both clear observation using a conventional analyzer/polarizer and operability-oriented observation without the need of an analyzer/polarizer are possible.

TU Plan Apo EPI
- **50x/100x/150x**
 - By using phase Fresnel lenses, these objective lenses achieve significantly longer operating distances while maintaining the superior chromatic aberration performance of apochromatic lenses.

TU Plan Apo BD
- **50x/100x/150x**
 - The low-magnification objective lenses enable longer working distances while offering higher level chromatic aberration correction than conventional objective lenses. This improves operability for samples with different heights.

TU Plan ELWD & T Plan SLWD Lenses

Color aberration correction and longer working distance through phase Fresnel lenses

Other lenses

CFL L Plan EPI CR
- **20x/50x/100x**
 - Equipped with corrective features that enable high contrast observation of cells or patterns, these observation lenses are unaffected by the glass substrate.

CFL E Plan EPI
- **5x/10x/20x/50x/100x**
 - Enables brightfield/darkfield observation.
Combination with digital camera

LV150N / LV100ND / LV150NA

Objective lens information detection and control

Information about the objective lens being used can be detected when combining the Intelligent Nosepiece LV-N151 and the Nosepiece Adaptor LV-INAD. The information is automatically converted to appropriate calibration data when changing the magnification.

In addition, the LV150NA allows switching of objective lenses via the imaging software.

- Detection of objective lens information
- Automatic calibration conversion

LV150N / LV100ND / LV150NA

LV100NDA

Microscope information detection and control

The LV100NDA allows detection of information and control of objective lenses, light intensity, aperture stop, and observation method (brightfield / darkfield / fluorescence) via the imaging software, enabling optimization of the conditions vital for image acquisition.

- Detection of objective lens, light intensity, aperture stop, and observation method (brightfield / darkfield / fluorescence) information
- Automatic calibration conversion

LV100NDA

Compatibility Chart of Information Detection and Control by Model

<table>
<thead>
<tr>
<th>Objective lens</th>
<th>Reflected Illumination</th>
<th>Transmitted Illumination</th>
<th>Observation method selector</th>
</tr>
</thead>
<tbody>
<tr>
<td>LV150N/LV100ND (When using LV-INAD)</td>
<td>□</td>
<td>□</td>
<td>□</td>
</tr>
<tr>
<td>LV150NA</td>
<td>□</td>
<td>□</td>
<td>□</td>
</tr>
<tr>
<td>LV100NDA (When using LV-INAD combined with LV150N)</td>
<td>□</td>
<td>□</td>
<td>□</td>
</tr>
</tbody>
</table>

Note: With NIS-Elements L and F, functions above are not available. Use NIS-Elements D/Br/Ar.

Camera System

Digital camera system for microscopes "Digital Sight System"

Microscope Camera

DS-Fi3

Three main features of the previous models, high-resolution, high sensitivity and low noise, and high-speed live display are offered in 1 camera.

- Frame Rate: 30 fps (1440×1024)
- Max Recordable Pixels: 2880×2048

DS-Ri2

Capable of expressing images as is, this microscope digital camera offers high resolution, color reproduction, and frame rate.

- Frame Rate: 45 fps (1636×1088)
- Max Recordable Pixels: 4908×3264

Imaging software NIS-Elements

Using a tablet PC

Simply installing NIS-Elements L on a tablet PC enables setting and control of DS-Fi3/DS-Ri2 microscope cameras, live image display, and image acquisition.

Wide variety of tools

NIS-Elements L enables the conducting of simple measurements on images, with input of lines and comments. These can also be written onto and saved with the image, and measurement data can be output.

Scene Mode

Ten camera setting patterns for optimal color reproduction and contrast for each microscope light source, observation method and type of sample, as well as custom settings, can be selected.

- Wafer/ IC
- Metal, Ceramic/ Plastic
- Circuit board
- Flat Panel Display

* See the "Digital Camera Digital Sight Series for Microscopes" brochure for details on Digital Sight features.
Observation Methods

Compatible with a wide range of observation methods: brightfield, darkfield, polarizing, differential interference, epi-fluorescence, and two-beam interferometry.

Substrate (solder)
The LV-N Series demonstrates superiority in the observation of samples with fluorescent properties, such as organic ELs or mounted substrates.

Emulsion
Colorless, transparent samples can be made visible through brightfield contrast and the use of diffraction and interference, two properties of light.

Semiconductors (IC wafers)
The use of Nikon’s unique concepts in the objective lens darkfield illumination system enables brightfield darkfield observation and provides high-sensitivity detection of level differences and defects in samples.

Dissocpic Brightfield
The LV-N Series is effective in the observation of samples with bonding properties, such as liquid crystals or plastics/glass containing distortion.

Crystalline materials
The LV-N Series is effective in the observation of samples with transparency, such as optical components, FPDs, and slide glass samples. When observing samples with fluorescent properties, such as optical components, FPDs, and slide glass samples. When observing samples with fluorescent properties, such as optical components, FPDs, and slide glass samples.

Observation of samples with transparency, such as optical components, FPDs, and slide glass samples. When observing samples with fluorescent properties, such as optical components, FPDs, and slide glass samples. When observing samples with fluorescent properties, such as optical components, FPDs, and slide glass samples.

Two-beam Interferometry
Standard-type and high-contrast-type DIC slides are available to match samples. The LV-N Series is effective for applications such as observation of minute level differences in devices and precision molds.

Minerals
The LV-N Series is effective in the observation of samples with bonding properties, such as liquid crystals or plastics/glass containing distortion.

Double Refraction
The LV-N Series is effective in the observation of samples with bonding properties, such as liquid crystals or plastics/glass containing distortion.

Epifluorescence Detection
The LV-N Series is effective in the observation of samples with bonding properties, such as liquid crystals or plastics/glass containing distortion.

Fiber Optics
The LV-N Series is effective in the observation of samples with bonding properties, such as liquid crystals or plastics/glass containing distortion.

Device Components
The LV-N Series is effective in the observation of samples with bonding properties, such as liquid crystals or plastics/glass containing distortion.

Micromotors
The LV-N Series is effective in the observation of samples with bonding properties, such as liquid crystals or plastics/glass containing distortion.

Viewing aids
The LV-N Series is effective in the observation of samples with bonding properties, such as liquid crystals or plastics/glass containing distortion.

Lenses
The LV-N Series is effective in the observation of samples with bonding properties, such as liquid crystals or plastics/glass containing distortion.

Glasses
The LV-N Series is effective in the observation of samples with bonding properties, such as liquid crystals or plastics/glass containing distortion.

Dissocpic Brightfield
The LV-N Series is effective in the observation of samples with bonding properties, such as liquid crystals or plastics/glass containing distortion.

Lenses
The LV-N Series is effective in the observation of samples with bonding properties, such as liquid crystals or plastics/glass containing distortion.

Glasses
The LV-N Series is effective in the observation of samples with bonding properties, such as liquid crystals or plastics/glass containing distortion.

Dissocpic Brightfield
The LV-N Series is effective in the observation of samples with bonding properties, such as liquid crystals or plastics/glass containing distortion.

Lenses
The LV-N Series is effective in the observation of samples with bonding properties, such as liquid crystals or plastics/glass containing distortion.

Glasses
The LV-N Series is effective in the observation of samples with bonding properties, such as liquid crystals or plastics/glass containing distortion.

Dissocpic Brightfield
The LV-N Series is effective in the observation of samples with bonding properties, such as liquid crystals or plastics/glass containing distortion.

Lenses
The LV-N Series is effective in the observation of samples with bonding properties, such as liquid crystals or plastics/glass containing distortion.

Glasses
The LV-N Series is effective in the observation of samples with bonding properties, such as liquid crystals or plastics/glass containing distortion.

Dissocpic Brightfield
The LV-N Series is effective in the observation of samples with bonding properties, such as liquid crystals or plastics/glass containing distortion.

Lenses
The LV-N Series is effective in the observation of samples with bonding properties, such as liquid crystals or plastics/glass containing distortion.

Glasses
The LV-N Series is effective in the observation of samples with bonding properties, such as liquid crystals or plastics/glass containing distortion.

Dissocpic Brightfield
The LV-N Series is effective in the observation of samples with bonding properties, such as liquid crystals or plastics/glass containing distortion.

Lenses
The LV-N Series is effective in the observation of samples with bonding properties, such as liquid crystals or plastics/glass containing distortion.

Glasses
The LV-N Series is effective in the observation of samples with bonding properties, such as liquid crystals or plastics/glass containing distortion.

Dissocpic Brightfield
The LV-N Series is effective in the observation of samples with bonding properties, such as liquid crystals or plastics/glass containing distortion.

Lenses
The LV-N Series is effective in the observation of samples with bonding properties, such as liquid crystals or plastics/glass containing distortion.

Glasses
The LV-N Series is effective in the observation of samples with bonding properties, such as liquid crystals or plastics/glass containing distortion.

Dissocpic Brightfield
The LV-N Series is effective in the observation of samples with bonding properties, such as liquid crystals or plastics/glass containing distortion.

Lenses
The LV-N Series is effective in the observation of samples with bonding properties, such as liquid crystals or plastics/glass containing distortion.

Glasses
The LV-N Series is effective in the observation of samples with bonding properties, such as liquid crystals or plastics/glass containing distortion.

Dissocpic Brightfield
The LV-N Series is effective in the observation of samples with bonding properties, such as liquid crystals or plastics/glass containing distortion.

Lenses
The LV-N Series is effective in the observation of samples with bonding properties, such as liquid crystals or plastics/glass containing distortion.

Glasses
The LV-N Series is effective in the observation of samples with bonding properties, such as liquid crystals or plastics/glass containing distortion.

Dissocpic Brightfield
The LV-N Series is effective in the observation of samples with bonding properties, such as liquid crystals or plastics/glass containing distortion.

Lenses
The LV-N Series is effective in the observation of samples with bonding properties, such as liquid crystals or plastics/glass containing distortion.

Glasses
The LV-N Series is effective in the observation of samples with bonding properties, such as liquid crystals or plastics/glass containing distortion.

Dissocpic Brightfield
The LV-N Series is effective in the observation of samples with bonding properties, such as liquid crystals or plastics/glass containing distortion.

Lenses
The LV-N Series is effective in the observation of samples with bonding properties, such as liquid crystals or plastics/glass containing distortion.

Glasses
The LV-N Series is effective in the observation of samples with bonding properties, such as liquid crystals or plastics/glass containing distortion.

Dissocpic Brightfield
The LV-N Series is effective in the observation of samples with bonding properties, such as liquid crystals or plastics/glass containing distortion.

Lenses
The LV-N Series is effective in the observation of samples with bonding properties, such as liquid crystals or plastics/glass containing distortion.

Glasses
The LV-N Series is effective in the observation of samples with bonding properties, such as liquid crystals or plastics/glass containing distortion.

Dissocpic Brightfield
The LV-N Series is effective in the observation of samples with bonding properties, such as liquid crystals or plastics/glass containing distortion.

Lenses
The LV-N Series is effective in the observation of samples with bonding properties, such as liquid crystals or plastics/glass containing distortion.

Glasses
The LV-N Series is effective in the observation of samples with bonding properties, such as liquid crystals or plastics/glass containing distortion.

Dissocpic Brightfield
The LV-N Series is effective in the observation of samples with bonding properties, such as liquid crystals or plastics/glass containing distortion.

Lenses
The LV-N Series is effective in the observation of samples with bonding properties, such as liquid crystals or plastics/glass containing distortion.

Glasses
The LV-N Series is effective in the observation of samples with bonding properties, such as liquid crystals or plastics/glass containing distortion.

Dissocpic Brightfield
The LV-N Series is effective in the observation of samples with bonding properties, such as liquid crystals or plastics/glass containing distortion.

Lenses
The LV-N Series is effective in the observation of samples with bonding properties, such as liquid crystals or plastics/glass containing distortion.

Glasses
The LV-N Series is effective in the observation of samples with bonding properties, such as liquid crystals or plastics/glass containing distortion.

Dissocpic Brightfield
The LV-N Series is effective in the observation of samples with bonding properties, such as liquid crystals or plastics/glass containing distortion.

Lenses
The LV-N Series is effective in the observation of samples with bonding properties, such as liquid crystals or plastics/glass containing distortion.

Glasses
The LV-N Series is effective in the observation of samples with bonding properties, such as liquid crystals or plastics/glass containing distortion.

Dissocpic Brightfield
The LV-N Series is effective in the observation of samples with bonding properties, such as liquid crystals or plastics/glass containing distortion.

Lenses
The LV-N Series is effective in the observation of samples with bonding properties, such as liquid crystals or plastics/glass containing distortion.

Glasses
The LV-N Series is effective in the observation of samples with bonding properties, such as liquid crystals or plastics/glass containing distortion.

Dissocpic Brightfield
The LV-N Series is effective in the observation of samples with bonding properties, such as liquid crystals or plastics/glass containing distortion.

Lenses
The LV-N Series is effective in the observation of samples with bonding properties, such as liquid crystals or plastics/glass containing distortion.

Glasses
The LV-N Series is effective in the observation of samples with bonding properties, such as liquid crystals or plastics/glass containing distortion.
Lens Specifications

Type

- **Brightfield**
- **Polarizing**
- **Brightfield/Low Working Distance**
- **Brightfield/Darkfield**

Dimensions

Model

- **LV100ND**
- **LV150S**
- **LV150NA**
- **LV150NL**
- **LV150NDA**

Table

<table>
<thead>
<tr>
<th>Type</th>
<th>Model</th>
<th>Magnification</th>
<th>Product Code No.</th>
<th>NA</th>
<th>Working Distance (mm)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Brightfield</td>
<td>T Plan EPI</td>
<td>1×</td>
<td>MUE120010</td>
<td>0.03</td>
<td>3.0</td>
</tr>
<tr>
<td></td>
<td></td>
<td>2.5×</td>
<td>MUE122500</td>
<td>0.075</td>
<td>6.5</td>
</tr>
<tr>
<td></td>
<td>TU Plan Fluor EPI</td>
<td>5×</td>
<td>MUE120500</td>
<td>0.15</td>
<td>23.5</td>
</tr>
<tr>
<td></td>
<td>Universal Plan Fluor</td>
<td>10×</td>
<td>MUE121000</td>
<td>0.2</td>
<td>17.5</td>
</tr>
<tr>
<td></td>
<td></td>
<td>20×</td>
<td>MUE122000</td>
<td>0.45</td>
<td>4.5</td>
</tr>
<tr>
<td></td>
<td></td>
<td>50×</td>
<td>MUE125000</td>
<td>0.8</td>
<td>1.0</td>
</tr>
<tr>
<td></td>
<td></td>
<td>100×</td>
<td>MUE129000</td>
<td>0.8</td>
<td>1.0</td>
</tr>
<tr>
<td></td>
<td>TU Plan Apo EPI</td>
<td>50×</td>
<td>MUC115000</td>
<td>0.8</td>
<td>2.0</td>
</tr>
<tr>
<td></td>
<td>Universal Plan Apo</td>
<td>100×</td>
<td>MUC119000</td>
<td>0.8</td>
<td>2.0</td>
</tr>
<tr>
<td></td>
<td></td>
<td>150×</td>
<td>MUC1115000</td>
<td>0.8</td>
<td>1.5</td>
</tr>
<tr>
<td></td>
<td>TU Plan Apo EPI P</td>
<td>5×</td>
<td>MUE120500</td>
<td>0.15</td>
<td>23.5</td>
</tr>
<tr>
<td></td>
<td>Polarizing Universal Plan</td>
<td>10×</td>
<td>MUE121000</td>
<td>0.3</td>
<td>17.5</td>
</tr>
<tr>
<td></td>
<td>Fluor</td>
<td>20×</td>
<td>MUE122000</td>
<td>0.45</td>
<td>4.5</td>
</tr>
<tr>
<td></td>
<td></td>
<td>50×</td>
<td>MUE125000</td>
<td>0.8</td>
<td>1.0</td>
</tr>
<tr>
<td></td>
<td></td>
<td>100×</td>
<td>MUE129000</td>
<td>0.8</td>
<td>1.0</td>
</tr>
<tr>
<td></td>
<td>TU Plan EPI ELWD</td>
<td>20×</td>
<td>MUE122000</td>
<td>0.4</td>
<td>19.0</td>
</tr>
<tr>
<td></td>
<td>Long Working Distance Plan</td>
<td>50×</td>
<td>MUC115000</td>
<td>0.8</td>
<td>11.0</td>
</tr>
<tr>
<td></td>
<td></td>
<td>100×</td>
<td>MUC119000</td>
<td>0.8</td>
<td>11.0</td>
</tr>
<tr>
<td></td>
<td>TU Plan Fluor BD</td>
<td>5×</td>
<td>MUE420500</td>
<td>0.15</td>
<td>18.0</td>
</tr>
<tr>
<td></td>
<td>Universal Plan Fluor</td>
<td>10×</td>
<td>MUE421000</td>
<td>0.3</td>
<td>15.0</td>
</tr>
<tr>
<td></td>
<td></td>
<td>20×</td>
<td>MUE422000</td>
<td>0.45</td>
<td>4.5</td>
</tr>
<tr>
<td></td>
<td></td>
<td>50×</td>
<td>MUE425000</td>
<td>0.8</td>
<td>1.0</td>
</tr>
<tr>
<td></td>
<td></td>
<td>100×</td>
<td>MUE429000</td>
<td>0.8</td>
<td>1.0</td>
</tr>
<tr>
<td></td>
<td>TU Plan Apo BD</td>
<td>50×</td>
<td>MUC415000</td>
<td>0.8</td>
<td>2.0</td>
</tr>
<tr>
<td></td>
<td>Universal Plan Apo</td>
<td>100×</td>
<td>MUC419000</td>
<td>0.8</td>
<td>2.0</td>
</tr>
<tr>
<td></td>
<td></td>
<td>150×</td>
<td>MUC501510</td>
<td>0.8</td>
<td>1.5</td>
</tr>
<tr>
<td></td>
<td>TU Plan BD ELWD</td>
<td>20×</td>
<td>MUE612000</td>
<td>0.4</td>
<td>19.0</td>
</tr>
<tr>
<td></td>
<td>Long Working Distance Plan</td>
<td>50×</td>
<td>MUE615000</td>
<td>0.6</td>
<td>11.0</td>
</tr>
<tr>
<td></td>
<td></td>
<td>100×</td>
<td>MUE619000</td>
<td>0.6</td>
<td>11.0</td>
</tr>
<tr>
<td></td>
<td>L Plan EPI CR</td>
<td>20×</td>
<td>MUE320500</td>
<td>0.45</td>
<td>10.2</td>
</tr>
<tr>
<td></td>
<td>For inspecting LCDs Plan</td>
<td>50×</td>
<td>MUE320500</td>
<td>0.45</td>
<td>10.2</td>
</tr>
<tr>
<td></td>
<td></td>
<td>100×</td>
<td>MUE320500</td>
<td>0.45</td>
<td>10.2</td>
</tr>
<tr>
<td></td>
<td></td>
<td>150×</td>
<td>MUE320500</td>
<td>0.45</td>
<td>10.2</td>
</tr>
<tr>
<td></td>
<td>L Plan EPI Plan (Achromat)</td>
<td>40×</td>
<td>MUC300400</td>
<td>0.95</td>
<td>1.0</td>
</tr>
<tr>
<td></td>
<td>L Plan Apo EPI</td>
<td>100×</td>
<td>MUC601000</td>
<td>0.95</td>
<td>0.4</td>
</tr>
<tr>
<td></td>
<td>Universal Plan Apo</td>
<td>150×</td>
<td>MUC601510</td>
<td>0.95</td>
<td>0.4</td>
</tr>
<tr>
<td></td>
<td></td>
<td>200×</td>
<td>MUC602000</td>
<td>0.95</td>
<td>0.4</td>
</tr>
<tr>
<td></td>
<td>L Plan Apo BD</td>
<td>100×</td>
<td>MUC500600</td>
<td>0.6</td>
<td>1.0</td>
</tr>
<tr>
<td></td>
<td>Universal Plan Apo</td>
<td>150×</td>
<td>MUC501510</td>
<td>0.6</td>
<td>1.0</td>
</tr>
<tr>
<td></td>
<td></td>
<td>200×</td>
<td>MUC502000</td>
<td>0.6</td>
<td>1.0</td>
</tr>
<tr>
<td></td>
<td>LE Plan EPI (Achromat)</td>
<td>5×</td>
<td>MUD000500</td>
<td>0.1</td>
<td>18.0</td>
</tr>
<tr>
<td></td>
<td></td>
<td>10×</td>
<td>MUD001000</td>
<td>0.15</td>
<td>13.0</td>
</tr>
<tr>
<td></td>
<td></td>
<td>20×</td>
<td>MUD002000</td>
<td>0.4</td>
<td>3.6</td>
</tr>
<tr>
<td></td>
<td></td>
<td>50×</td>
<td>MUD005000</td>
<td>0.4</td>
<td>3.6</td>
</tr>
<tr>
<td></td>
<td></td>
<td>100×</td>
<td>MUD009000</td>
<td>0.4</td>
<td>3.6</td>
</tr>
<tr>
<td></td>
<td>LE Plan BD (Achromat)</td>
<td>5×</td>
<td>MUD100200</td>
<td>0.15</td>
<td>13.0</td>
</tr>
<tr>
<td></td>
<td></td>
<td>10×</td>
<td>MUD101010</td>
<td>0.75</td>
<td>3.6</td>
</tr>
<tr>
<td></td>
<td></td>
<td>20×</td>
<td>MUD102000</td>
<td>0.75</td>
<td>3.6</td>
</tr>
<tr>
<td></td>
<td></td>
<td>50×</td>
<td>MUD105000</td>
<td>0.75</td>
<td>3.6</td>
</tr>
</tbody>
</table>
System Diagram
for LV150N/LV150ND/LV100NDA/LV100NDA
Specifications and equipment are subject to change without any notice or obligation on the part of the manufacturer. May 2019 ©2012-2019 NIKON CORPORATION

N.B. Export of the products* in this brochure is controlled under the Japanese Foreign Exchange and Foreign Trade Law. Appropriate export procedures shall be required in case of export from Japan.

*Products: Hardware and its technical information (including software)

Company names and product names appearing in this brochure are their registered trademarks or trademarks.

WARNING TO ENSURE CORRECT USAGE, READ THE CORRESPONDING MANUALS CAREFULLY BEFORE USING THE EQUIPMENT.

NIKON CORPORATION
Shinagawa Intercity Tower C, 2-15-3, Konan, Minato-ku, Tokyo 108-6290, Japan
phone: +81-3-6433-3701 fax: +81-3-6433-3784
https://www.nikon.com/products/industrial-metrology/

ISO 14001 Certified for NIKON CORPORATION
ISO 9001 Certified for NIKON CORPORATION
Industrial Metrology Business Unit

NIKON METROLOGY, INC.
12701 Grand River Avenue, Brighton, MI 48116 U.S.A.
E-mail: Sales.NM-US@nikon.com
http://www.nikonmetrology.com/en-us

NIKON CANADA INC.
INDUSTRIAL METROLOGY SHOWROOM
1016 Colonel By Drive, Ottawa, ON K2C 1T1
phone: +1-613-737-3311 fax: +1-613-737-3330
E-mail: Sales.NM-CA@nikon.com

NIKON MEXICO METROLOGY SHOWROOM
MEXICO CITY
Avenida de los Insurgentes Sur 230, Col. Cerro del Chiquihuite, Mexico D.F., C.P. 03100
phone: +52-55-5996-3000 fax: +52-55-5996-3001
E-mail: Sales.MX-MA@nikon.com

NIKON CHINA Instrument Co., Ltd.
3F, No.188, Minhang Road, Wuji District, Shanghai, 200052, China
phone: +86-21-3853-5599 fax: +86-21-3853-5590
E-mail: Sales.NM-CN@nikon.com

NIKON MALAYSIA SDN BHD
7-1, Jalan Desa Iskandar, Desa Iskandar, 48100, Damansara Heights, Kuala Lumpur, Malaysia
phone: +60-3-7899-3688 fax: +60-3-7899-3633
E-mail: PTN.Instruments@nikon.com

NIKON INDIA PRIVATE LIMITED
85-87, Sector 2, Noida, Uttar Pradesh, 201301, India
phone: +91-120-4688500 fax: +91-120-4688527
E-mail: NSG.Industrial-sales@nikon.com

Printed in Japan (1905-02) Av/M